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• Alveoli geometry was obtained from an 
electron micrograph (Fig. 2A) [2]. 

• A single alveolus has the form of an 
ellipsoidal shell (major axis:122 ± 6.1 μm, 
minor axis: 93 ± 3.5 μm, circular opening: 70 
± 3.0 μm, wall thickness: 7 μm; Fig. 2B).

• A 3D mesh was created (~54k hexahedral 
elements) with a custom-written algorithm.
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Fig. 2: (A) Electron micrograph of human lung 
parenchyma [2]. Alveoli (A1-3) and wall thickness 
(W1-2) used to define model geometry. (B) 
Alveolus model  in FEBio [4] and an arbitrary point 
(P) with 12 groups of fibers.

Geometry & Mesh

Material Coefficient

• The alveolus opening was constrained in all directions, and varying pressure was exerted 
on the inner surface, resulting in cycles of inflation and deflation. 

• An internal pressure range from 0 to 8 cmH2O was applied, where 8 cmH2O corresponds 
to the pressure at total lung capacity in the saline-filled lung experiment [5].

Boundary & Load Conditions

• Collagen fibers were described using a tension-only exponential stress-strain energy 
function (material coefficients: ξ, α, and β) with 12 groups of fibers (15º between 
adjacent fiber populations; Fig. 2B – blue lines around point ‘P’).

• Ground matrix was described as a Neo-Hookean material (parameters of E and ν).
• All 5 material coefficients were calibrated by comparing the PV response from our 

simulation with data in the literature (R2>0.9) [3, 5]. 
• For parameter identification, we used PV curves of saline filled cat lungs, which 

eliminates the contribution of surface tension forces during lung recoil.
• To simulate pulmonary fibrosis, the alveolar wall thickness (t) and fiber modulus (ξ) 

were increased by 30%.

• Human lungs consist of a branching network of 
airways that start at the trachea and terminate 
at the alveolus. 

• There are ~300 million alveoli, which are 
microscopic balloon-like sacs found in small 
clusters (Fig.1); providing a large surface area 
for gas exchange (>1 m2/kg per body mass) [2]. 

• The alveolar wall contains elastin and collagen fibers, and is coated
on the inside with a layer of fluid. 

• Tension in the fibrous tissue, in combination with surface tension at the air-fluid 
interface, maintains the internal lung structure by exerting a deflating force, often 
referred to as elastic recoil [3]. 

• Limited tools (MRI & LDCT) are available to understand the effect of changes in lung 
tissue structure with respect to lunch mechanics and function.

• Finite Element (FE) Modeling can be used to understand the effects of certain lung 
diseases such as Emphysema and Pulmonary Fibrosis (PF) and to improve treatment. 

• We developed a FE model of a single alveolus to determine the effect of pulmonary 
wall fibrous tissue mechanics and PF on alveolar function.

• We developed a FEM based on human alveoli geometry and calibrated to PV curves 
reported in the literature. This model is valuable for understanding mechanisms of 
lung disease, including pulmonary fibrosis.

• An alveolus undergoes expansion and contraction during breathing with stresses 
being 3.6X greater on the inner walls than the outer wall. 

• Symptoms associated with PF, thicker wall and stiffer fibers, both caused the alveoli 
to become less compliant. 

• A combination of the two symptoms led to a drastic decrease in surface area 
available for gas exchange, which agrees well with clinical observations [6, 7, 8]. 

• Full model validation for human lung mechanics is limited due to the lack of 
necessary data in the literature (reported data used cat lung). 

• In this model, we assumed equivalence between the PV curve of the whole lung and 
that of a single alveolus, which is not very well understood.

• Future work will incorporate the effect of surfactants in the fluid lining, which can 
alter gas exchange and surface tension mechanics.

• In conclusion, alveoli wall structure and mechanics play an important role in 
oxygen gas exchange potential, which is important for understanding how certain 
lung diseases affect lung function. 
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Fig. 3: (A) Volume (normalized by reference configuration volume) for the model of cat lung experiment, 
and different cases modeling PF vs. Pressure; (B) Volume change per cmH2O (C) Alveolar wall thickness. 

• Alveolar wall thickness decreased 
steeply at low pressures, reaching a 
plateau of ~2 μm thickness at higher 
pressures (Fig. 3C).

• At maximum applied pressure, alveolus 
inner wall strains were ~200% with an 
effective stress of 40 kPa. Strain and 
stress decreased to ~160% and 11kPa, 
respectively, on the outer wall surface 
(Figs. 4A & B). 
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• Curve-fitting to experimentally determined PV response resulted in the following 
material coefficients: E = 1 KPa, ν = 0.45, ξ = 0.03 KPa,  α = 0.1, and β = 2.5 (Fig. 3A –
black circles (data) vs. black line (model fit); R2 = 0.97).

Fig. 1: Lung microstructure [1, 2].
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Fig. 4 (A) Cross sectional view of alveolar reference 
configuration (grey), effective Lagrangian strain and 
(B) stress distribution at 8 cmH2O.

• PF decreased alveolar pressure, and the changes in alveolus capacity was more 
pronounced at lower pressures (2-4 mmH2O; Fig. 3A & B).

mailto:g.oconnell@berkeley.edu

