

Lung Micromechanics of Pulmonary Fibrosis: A Finite Element Analysis

Bo Yang, Abdulrahman Jbaily, Yintong Lu, Andrew J. Szeri, Grace D. O'Connell University of California, Berkeley, Berkeley, CA

Introduction

- Human lungs consist of a branching network of airways that start at the trachea and terminate at the alveolus.
- There are ~300 million alveoli, which are microscopic balloon-like sacs found in small clusters (Fig.1); providing a large surface area for gas exchange (>1 m²/kg per body mass) [2].

• The alveolar wall contains elastin and collagen fibers, and is coated on the inside with a layer of fluid.

Fig. 3: (A) Volume (normalized by reference configuration volume) for the model of cat lung experiment, and different cases modeling PF vs. Pressure; (B) Volume change per cmH₂O (C) Alveolar wall thickness.

- Tension in the fibrous tissue, in combination with surface tension at the air-fluid interface, maintains the internal lung structure by exerting a deflating force, often referred to as elastic recoil [3].
- Limited tools (MRI & LDCT) are available to understand the effect of changes in lung tissue structure with respect to lunch mechanics and function.
- Finite Element (FE) Modeling can be used to understand the effects of certain lung diseases such as Emphysema and Pulmonary Fibrosis (PF) and to improve treatment.
- We developed a FE model of a single alveolus to determine the effect of pulmonary wall fibrous tissue mechanics and PF on alveolar function.

Methods

Geometry & Mesh

- Alveoli geometry was obtained from an electron micrograph (Fig. 2A) [2].
- A single alveolus has the form of an ellipsoidal shell (major axis:122 \pm 6.1 μ m, minor axis: $93 \pm 3.5 \ \mu m$, circular opening: 70 100 μm \pm 3.0 μ m, wall thickness: 7 μ m; Fig. 2B). A 3D mesh was created (~54k hexahedral elements) with a custom-written algorithm. Material Coefficient

- Alveolar wall thickness decreased steeply at low pressures, reaching a plateau of ~2 µm thickness at higher pressures (Fig. 3C).
- At maximum applied pressure, alveolus inner wall strains were ~200% with an effective stress of 40 kPa. Strain and stress decreased to ~160% and 11kPa, respectively, on the outer wall surface (Figs. 4A & B).

Fig. 4 (A) Cross sectional view of alveolar reference configuration (grey), effective Lagrangian strain and (B) stress distribution at 8 cmH₂O.

PF decreased alveolar pressure, and the changes in alveolus capacity was more pronounced at lower pressures (2-4 mmH2O; Fig. 3A & B).

Discussion

- We developed a FEM based on human alveoli geometry and calibrated to PV curves reported in the literature. This model is valuable for understanding mechanisms of lung disease, including pulmonary fibrosis.
- An alveolus undergoes expansion and contraction during breathing with stresses being 3.6X greater on the inner walls than the outer wall.

parenchyma [2]. Alveoli (A1-3) and wall thickness (W1-2) used to define model geometry. (B) Alveolus model in FEBio [4] and an arbitrary point (P) with 12 groups of fibers.

- **Collagen fibers** were described using a tension-only exponential stress-strain energy function (material coefficients: ξ , α , and β) with 12 groups of fibers (15^o between adjacent fiber populations; Fig. 2B – blue lines around point 'P').
- *Ground matrix* was described as a Neo-Hookean material (parameters of E and v).
- All 5 material coefficients were calibrated by comparing the PV response from our simulation with data in the literature (R²>0.9) [3, 5].
- For parameter identification, we used PV curves of saline filled cat lungs, which eliminates the contribution of surface tension forces during lung recoil.
- To simulate *pulmonary fibrosis*, the alveolar wall thickness (t) and fiber modulus (ξ) were increased by 30%.

Boundary & Load Conditions

- The alveolus opening was constrained in all directions, and varying pressure was exerted on the inner surface, resulting in cycles of inflation and deflation.
- An internal pressure range from 0 to 8 cmH₂O was applied, where 8 cmH₂O corresponds to the pressure at total lung capacity in the saline-filled lung experiment [5].

- Symptoms associated with PF, thicker wall and stiffer fibers, both caused the alveoli to become less compliant.
- A combination of the two symptoms led to a drastic decrease in surface area available for gas exchange, which agrees well with clinical observations [6, 7, 8].
- Full model validation for human lung mechanics is limited due to the lack of necessary data in the literature (reported data used cat lung).
- In this model, we assumed equivalence between the PV curve of the whole lung and that of a single alveolus, which is not very well understood.
- Future work will incorporate the effect of surfactants in the fluid lining, which can alter gas exchange and surface tension mechanics.
- In conclusion, alveoli wall structure and mechanics play an important role in oxygen gas exchange potential, which is important for understanding how certain lung diseases affect lung function.

Acknowledgements

This study was supported by the Hellman Fellows Fund and the Graduate Division Block Grant Award from Mechanical Engineering Department at UC Berkeley.

References

Results

Curve-fitting to experimentally determined PV response resulted in the following

material coefficients: E = 1 KPa, v = 0.45, ξ = 0.03 KPa, α = 0.1, and β = 2.5 (Fig. 3A –

black circles (data) vs. black line (model fit); R2 = 0.97).

[1] MedicalGraphics, http://www.medicalgraphics.de/en/; [2] Hsia, CCW et al., Compr Physiol, 6.2:827–895, 2016; [3] Hoppin, FG et al., Handbook of Physiol, ch.13:195-215, 1986; [4] Maas, SA, J Biomech Eng., 134.1:011005, 2012; [5] Harris, RS, Respir. Care, 50.1:78-99, 2005; [6] Muhlfeld C et al., Am J Physiol Lung Cell Mol Physiol, 305:205-221, 2013; [7] Selman, M et al., Ann. Intern. Med., 134.2, 136-151, 2001; [8] Gunther, A et al., Am. J. Respir. Crit. Care Med., 168.11:1358-1365, 2003 Email: g.oconnell@berkeley.edu, web: oconnell.berkeley.edu