

Voxel Meshing for Subject Specific

Intervertebral Disc Finite Element Models

Bo Yang, Yeabsra B. Habtegebriel, Yu Ma, and Grace. D. O'Connell, PhD

University of California, Berkeley, Berkeley, CA

Introduction

- Finite element models (FEM) are powerful tools that can be used to understand subject specific intradiscal stress-strain distributions with injury and degeneration.
- Most current disc models have been generated using mesh based on computer-aided design (CAD) [1, 2], which reconstructs smooth surface first then generates the mesh.
- Developing CAD-based meshing is time-consuming and full of manual variability in tissue geometry and position.
- Voxel meshing (image-based meshing) converts image data to brick elements, which is a *automatic process* generating *geometry-close mesh*.
- Voxel meshing is widely used in bone modeling [3, 4], but rarely for disc modeling. • Therefore, the objective of this study was to *develop algorithms to produce a voxel* mesh of a bovine disc, a complex fibrocartilage structure that consists of nucleus pulposus (NP), annulus fibrosus (AF), and cartilage endplate (CEP).

-10

Methods

1. Sample Preparation and MRI Scans

- Eleven bone-disc-bone motion segments were prepared.
- Specimens were imaged using a 3D Fast Low Angle Shot (FLASH) sequence and a 16slice 2D scan using a T2 RARE sequence (7T Bruker scanner).

2. Disc Boundary Segmentation and Reconstruction

- ImageJ was used to visualize the scan as a 3D volume (Fig.2).
- A semi-automatic approach was used to segment the disc boundary every 6th image (25% of acquired slices; Fig. 3).
- A signed distance function was obtained for the disc boundary and interpolation was conducted on them resulting in a 3D matrix output of signed distance functions [5].

Fig 2: 3D Scan (Raw)

Fig. 5: (A-I) Images through each step of the mesh generation process. (J) Disc mesh shown in Preview (FEBio software).

-20

- Fig. 5A: Disc boundary selection and interpolation through the disc thickness.
- Fig. 5B-E: Automated process for detecting the bone boundary and converting it into a signed disc function.
- Fig. 5F-I: Automated process for detecting NP boundary from the surrounding AF tissue using a similar approach that was employed for defining the bone boundary.
- Fig. 5J: Final voxel mesh, including the NP, AF, CEP, and bony endplate.

-30

-40

Discussion

- We developed a semi-automated approach for converting MR images of the intervertebral disc into a voxel-based mesh for finite element analyses.
- Voxel-based meshes for a single disc were generated within 15 minutes (not including scanning time), which is up to 20X faster than CAD-based approaches.
- Importantly, this increases the feasibility of developing subject-specific models over representative models to investigate the effect of repair strategies.
- We developed voxel mesh model for the intervertebral disc, but this method is also

3.Boney Segmentation

- To separate the bone boundary, images were binarized with a set threshold (0.25).
- The bone boundary was detected using Sobel edgedetection method (Fig. 3) [6].
- The bone boundary curve was turned into a signed distance function used to interpolate between slices.
- Finally, the segmented vertebral bodies were subtracted, leaving a disc-only mesh.

4. NP and AF Segmentation

- The boundary between NP and AF was determined automatically from T2-weighted images, where the NP signal intensity is greater than the AF (Fig. 4).
- Images were binarized with a threshold of 0.55.
- Unwanted regions were removed using a built in Matlab function (Matlab – bwareaopen).
- Again, the boundary was converted into a signed distance function and interpolated through the disc

Fig 3: Selection of Two Boundaries

- applicable to other soft tissue such as vessel, tendon and ligament modeling [9].
- Brick elements from voxel-based meshes have a higher quality than manuallygenerated hexahedral meshes, but have a larger number of elements that requires additional computational power finite element analysis [10].
- While we were able to visualize AF lamellae in the MRI the scan resolution was not sufficient to determine boundaries between lamellae.
- The semi-automated voxel-based mesh approach provided subject-specific disc geometry, and NP position and geometry.
- Future work will employ the approaches described here on human discs to evaluate subject-specific stress distributions with injury and degeneration.

Acknowledgements

This study was supported by the Hellman Fellows Fund and the Graduate Division Block Grant Award from Mechanical Engineering Department at UC Berkeley.

References

[1] Jacobs, NT, et al., J. Biomech., 47.11: 2540-2546, 2014; [2] Yao, H, et al, J. Biomech, 40.9: 2071-2077, 2007; [3] Hollister, SJ, et al., Biotechnol Bioeng, 43.7: 586-596, 1994; [4] Morgan, EF, et al., BoneKEy-Ostevision, 2.12: 8-19, 2005; [5] Tsai, A, et al., IEEE Trans Med Imaging, 22.2: 137-154, 2003; [6] Sobel, I, et al., Comput Vision Graph, 8.1: 127-135, 1978; [7] Wu, Y, et al., J Biomech, 48.12: 3185-3191, 2015; [8] Davies, J, John Wiley & Sons, 2012; [9] Bernsdorf, Jörg et al. Comput Math Appl 58.5:1024-1029, 2009; [10] Ghosh, S, et al., New York: Springer, 2011;

Fig 4: A 2D T2 weighted image at the middle disc height.

• CEP (0.6 mm) and bony endplate (1.5mm) were added to the superior and inferior

sections of the segmented disc using data reported in literature [7,8].

Lastly, all geometries were written into an *.inp file, which can be imported into FEM

software, including as FEBio and ABAQUS.

