The launching of a prolate-spheroidal body in a deep fluid and its descending trajectory

By

Bo Yang BS (Dalian University of Technology) 2013

A report submitted in partial satisfaction of the requirements for the degree of

Master of Science

in

Engineering - Mechanical Engineering

in the

Graduate Division

 \mathbf{at}

University of California, Berkeley

Committee in charge:

April 9, 2015 -malow. C e.

Professor Ronald W. Yeung, Chair

Ma

Professor Fai Ma

Spring 2015

The launching of a prolate-spheroidal body in a deep fluid and its descending trajectory

Bo Yang May 13, 2015

Abstract

In recent decades, a lot of attention has been paid to exploring the deep ocean environment and exploiting benchonic recourses. Submarines and unmanned underwater vehicles (UUV) play an important role in this process. In the design stage of these underwater vehicles, it is of great interest to develop a hydrodynamic model, which could help predict their hydrodynamic performance and suggest potential control strategy. In this report, equations of motion for a submerged body of prolate-spheroidal shape are derived by including the consideration of gravitational force, buoyancy, hydrodynamic force. A fully coupled, time-dependent, and nonlinear system is developed. Then, a 4^{th} -order Runge-Kutta integration method is used to solve it in MatLab. Instantaneous position, attitude, velocity, and angular velocity are obtained. Then, oscillation of trajectory descending is observed for a prolate spheroid under gravitational force and factors influencing the oscillation period are studied.

> Master of Science in Mechanical Engineering University of California at Berkeley Berkeley, CA 94720-1740 Professor Ronald W. Yeung, Chair

Acknowledgment

I would like to thank Prof. Ronald W. Yeung for giving me the opportunity to work on this project and it is his patient guidance that enables the completion of this work. Many of my peers in the Computational Marine Mechanics Laboratory (CMML) who have provided support for this work, are truly appreciated. Of course, I acknowledge the understanding and support from my family and friends during the program.

The author is sponsored by Jaehne Graduate Scholarship in his first year of graduate program in UC Berkeley.

Contents

Li	t of Figures	vii
\mathbf{Li}	t of Tables	viii
1	Introduction 1.1 Literature Review and Objectives	1 1 3
2	Coordinate Systems and Coordinate Transformation 2.1 Coordinate Systems and State Variables	4 4 5 6
3	Gravitational Force and Buoyancy 3.1 Gravitational Force in Body Coordinate System 3.2 Buoyancy in Body Coordinate System 3.3 Forces Combination and Generalization	8 8 9 9
4	Hydrodynamic Force 4.1 Added-mass Theory 4.1.1 Assumptions and Expression of Hydrodynamic Force 4.1.2 Hydrodynamic Force in terms of Velocity Potential 4.1.3 Kirchhoff Decomposition 4.1.4 Added Masses 4.2 Added Masses for a Prolate Spheroid 4.2.1 Symmetry Effects 4.2.2 Analytical Solution for Added Mass of Prolate Spheroid 4.3 Hydrodynamic Force and Moment for Prolate Spheroid 4.4 Hydrodynamic Damping	11 11 12 13 14 14 15 17 18 19
5	Equations of Motion 5.1 Equations of Motion 5.2 Non-Dimensionalization 5.3 Analysis of Equations of Motion and Numerical Computations 5.3.1 Second-Order, Time-Dependent, Nonlinear, Fully coupled System 5.3.2 Numerical Integration	 20 20 24 27 27 28
0	Simplified Equations of Motion and Numerical Cases6.13-degree Freedom In-plane Motion6.2Moving Forward with Oscillation6.3In-plane Motion for Prolate Spheroid with Uniform Density Distribution6.4Energy Conservation6.5Oscillation Period Changes with Release Angle6.6Oscillation Period Changes with Initial Velocity	30 31 34 36 37 40
7	Conclusions 7.1 Summary and Conclusions 7.2 Future Work	43 43 43

References		44
$\mathbf{A} \ \mathbf{J}_2$		46
 B Translational Motion an B.1 Translational Motion B.2 Rotational Motion 	nd Rotational Motion	50 50 51
C A Case of Non-uniform	Mass Distribution	53
D 3-D Check		56
E MatLab Code		60
E.1 Model Define E.2 Processing	· · · · · · · · · · · · · · · · · · ·	60 61
E.3 Post-processing \ldots		65

LIST OF FIGURES

$1.1 \\ 1.2 \\ 1.3 \\ 1.4$	David Bushnells Turtle [3]	$1 \\ 1 \\ 2 \\ 2$
$2.1 \\ 2.2 \\ 2.3 \\ 2.4$	Coordinate systems and standard notations [18]	$ 4 \\ 6 \\ 6 \\ 7 $
$4.1 \\ 4.2$	Prolate spheroid	$5 \\ 6$
6.1	Prolate-spheroidal rigid body with center of mass below center of buoyancy with initial condition as indicated	2
$\begin{array}{c} 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ 6.7 \\ 6.8 \\ 6.9 \\ 6.10 \\ 6.11 \\ 6.12 \end{array}$	Dimensionless position coordinates and Euler angles of Simulation 1	
6.13 6.14 6.15	Histories of \bar{x} when the release angle $= -\frac{\pi}{4}$ and initial speed is changed $\ldots \ldots 4$ Histories of θ when fix the release angle and change initial speed $\ldots \ldots 4$ Periods for θ vs initial Speed $\ldots \ldots 4$	1 1 2
C.1	Distribution of density	3
D.1 D.2 D.3 D.4 D.5	Case 1 5 Case 2 5 Case 3 5 Case 4 5 Dimensionless position in EFF and attitude 5 Dimensionless position in EFF and attitude 5	6 7 7 8 8
D.0	Dimensionless velocity III DFF	9

LIST OF TABLES

2.1	Euler angles and fixed axes in three steps	5
4.1	Symmetry of prolate spheroid	5
$5.1 \\ 5.2$	Dimensions of variables 24 Dimensionless variables 25	1 5
$\begin{array}{c} 6.1 \\ 6.2 \end{array}$	Parameters of the model for Simulation 1 32 Parameters of the model for Simulation 2 34	2 1
D.1 D.2	Release attitudes of Four Cases 56 Parameters of the model 56	3 3

Chapter 1

INTRODUCTION

1.1 LITERATURE REVIEW AND OBJECTIVES

Human beings have a long history of building crafts able to dive and operate underwater. These crafts include submarines and unmanned underwater vehicles (UUV). The first concept design published in 1578 owed to English mathematician William Bourne, whose idea was realized by Cornelius Drebbel in 1620 with a wooden vehicle covered with waterproof leather and propelled by oars [1].

Although early submarines were designed to explore underwater, soon their military value became the main motivation of fast development. In 1775, Turtle, the first submarine participating in military action, as shown in Fig. 1.1, was designed by American David Bushnell and his brother, Ezra. This wooden egg-shaped submarine could accommodate one person and was propelled by human power through screws [2]. From the late 1700s to the early 1900s, submarine technology developed to maturity, with improvements in design, material, energy and propulsion technologies. It started to equip navies and played an important role in World War I and World War II. At the same time, its appearance and shape features became standardized. Fig. 1.2 (a) shows a conceptual graph of the nuclear-powered Ohio class, which is the largest submarine built by U.S. Navy. Fig. 1.2 (b) illustrates several classes

of Russian submarines. Most of these large submarines are in simple shape consisting of a cylindrical main body, a hemisphered head and a conical tail.

Figure 1.2: (a) Ohio class submarine [4] and (b) Russian submarine classes [5]

These streamline slender shapes are structurally efficient to resist high underwater pressure; and at the same time, it helps reduce hydrodynamic resistance. Today, submarine is still popular and important to navies of all countries. By 2014, United States, Russia, and China navies were equipped with 72, 63 and 69 submarines, respectively [6]. Other than military usage, there are small civilian submarines used for tourism, exploration and serving offshore industry.

Submersibles are known as being able to withstand high pressure and dive very deep to the ocean bottom. Because of this, they are widely used for ocean exploration and underwater archeology. Fig. 1.3 shows Alvin of United States and Jiaolong of China. Other well-known submersibles include Epaulard of France, Mir I and II of Russia, and Shinkai 6500 of Japan. All of them are not big in size and could accommodate a few people. Besides, they are not autonomous and need connecting to a support vessel to get replenishment. In addition to manned submersibles, there are also unmanned submersibles towed by ship having sensors for ocean exploration.

Figure 1.3: (a) Alvin [7] and (b) Jiaolong [8]

UUV can be divided into remotely operated underwater vehicle (ROV) and autonomous underwater vehicle (AUV). Early ROVs fabricated in middle 20th century were mainly used for military usage, such as uncovering torpedoes and mines. Later, it became widely used for offshore oil and gas industry when floating platform moved to deep ocean where divers could not reach.

Figure 1.4: Bluefin 21 joining the searching of missing flight [11]

There is a tether or an umbilical cable connecting ROV to supporting ship on the ocean surface, through which electricity power and control signal are delivered and information is exchanged [2, 9]. Different from ROV, AUV is a mobile robot equipped with a power source. It could travel relatively fast in designed route to accomplish predetermined tasks without requiring control input from crew. Torpedo is thought to be the first AUV; but the real design and development of AUVs began in 1960s [2]. AUVs have big advantages over other underwater vehicles as platforms for all kinds of sensors. Through the last five decades, the technology has guickly developed with support from navies [10]. With the maturity of this technology, it started to be used for ocean oceanography, offshore industry, and sea rescues. Fig. 1.4 shows Bluefin 21 being transported to join searching the missing Malaysia Airlines Flight 370 [11]. It is noted that torpedoes-like AUVs and submarines have similar shape since they both require relatively high cruise speed.

Conducting prototype or model test for submarine craft is a costly and time consuming process, especially because of the fact that geometry parameters need to be readjusted to satisfy different requirement. An accurate hydrodynamic model will be of great use to predict the hydrodynamic performance at the early state of design. It can give an insight for the interaction between vehicles and fluid and further suggest appropriate control strategies and parameters. Thus, there has been a lot of work on the equations of motion for underwater vehicles. Morton Gertier and Grant R. Hagen gave standard equations to simulate the trajectories of submarines in six degrees of freedom [12], which was revised by J. Feldman [13]. Thor I. Fossen developed detailed derivation of equations of motion in his book [14]. Meyer Nahon provided a simplified dynamics model by decomposing the vehicle into three constituent elements [15]. Besides, these equations are widely used AUV design process of [9, 16, 17].

1.2 Report Outline

This report derives the equations of motion for a submerged rigid body (SB) of prolate-spheroidal shape and its motion is simulated by numerical methods. Firstly, earth-fixed and body-fixed coordinate systems are defined and twelve state variables are chosen to describe SB's instantaneous state. Coordinate transformation and relationship between position and velocity variables are derived. Then gravitational force and buoyancy are expressed in both frames; hydrodynamic force is modeled by using added mass theory, and viscosity is considered by including hydrodynamic damping. Acceleration and resultant force are related by Newton's second law and Euler equations. After nondimensionalization, dimensionless equations of motion are obtained. The motion is simulated by numerically integrating dimensionless, nonlinear and fully coupled equations of motion of 6 degrees of freedom. Finally, prolate-spheroidal rigid body's free descending under gravitational is studied. Oscillation is observed and factors influencing the oscillation are discussed.

Chapter 2

COORDINATE SYSTEMS AND COORDINATE TRANSFORMATION

In this study, the submerged body (SB) is able to have six degrees of freedom including three in translation and the other three in rotation. To describe the motion of SB properly, two right-handed Cartesian coordinate systems are introduced and transformations between the two are derived.

2.1 Coordinate Systems and State Variables

Two coordinate systems used here are earth-fixed frame (EFF) and body-fixed frame (BFF), as shown in Fig. 2.1.

Figure 2.1: Coordinate systems and standard notations [18]

EFF is fixed on the earth. We refer this frame as Oxyz, as shown in Fig. 2.1 with Ox pointing north, Oy east, and Oz downward. BFF, notated as $O'\hat{x}\hat{y}\hat{z}$, is fixed on SB and can move and rotate with SB. This frame's origin O' is an arbitrary point on SB with $O'\hat{x}$ pointing forward, $O'\hat{y}$ portside, and $O'\hat{z}$ downward.

Standard notation given in [18] is used here to describe SB's state. Position vector from O to O', denoted as \boldsymbol{r} , is used to represent the SB's position and has expression of $[x, y, z]^T$ in EFF. In terms of orientation, Euler angles $\boldsymbol{\alpha} = [\phi, \theta, \psi]^T$ describe an arbitrary attitude of SB. Resultant force \boldsymbol{F}_r , translational velocity $\boldsymbol{v}_{O'}$, moment around O', \boldsymbol{M}_r , and angular velocity $\boldsymbol{\omega}$ are expressed as $[X, Y, Z]^T$, $[u, v, w]^T$, $[K, M, N]^T$, and $[p, q, r]^T$, respectively in BFF.

Note that starting with EFF, any orientation of BFF can be obtained by a three-step rotation. In each step, we fix one axis and rotate the frame about that axis with an angle, which can be solved uniquely. For any orientation, there are twelve sets of three-step rotations and they can be divided into two groups depending on whether the fixed axes in step one and step three are the same. The first group, named Classic Euler Angles, consisting of six conditions and in this group the same axis is fixed in step one and step three. The other group has the name of Tait-Bryan Angles, in which the body rotates about three different axes in three steps.

Classic Euler Angles	Tait-Bryan Angles
$\hat{x} - \hat{y} - \hat{x}$	$\hat{x}-\hat{y}-\hat{z}$
$\hat{x} - \hat{z} - \hat{x}$	$\hat{x} - \hat{z} - \hat{y}$
$\hat{y} - \hat{x} - \hat{y}$	$\hat{y} - \hat{x} - \hat{z}$
$\hat{y}-\hat{z}-\hat{y}$	$\hat{y} - \hat{z} - \hat{x}$
$\hat{z}-\hat{x}-\hat{z}$	$\hat{z} - \hat{x} - \hat{y}$
$\hat{z}-\hat{y}-\hat{z}$	$\hat{z}-\hat{y}-\hat{x}$

Table 2.1 :	Euler	angles	and	fixed	axes	in	three	steps
---------------	-------	--------	-----	-------	------	----	-------	-------

All twelve sets of sequence shown in Tab. 2.1 could achieve an arbitrary orientation of SB; however, in most cases, different sets of rotation sequence need different and unique angular values. We choose $\hat{z} - \hat{y} - \hat{x}$ as the fixed axes of rotation and the corresponding rotating angles are $\psi - \theta - \phi$.

2.2 TRANSFORMATION MATRIX

Until now, we have all twelve state variables including position vector $\boldsymbol{\eta} \equiv [x, y, z, \phi, \theta, \psi]^T$ in inertia frame and velocity vector $\boldsymbol{\nu} \equiv [u, v, w, p, q, r]^T$ in BFF. Transformation matrix $\boldsymbol{J}(\boldsymbol{\alpha})$ could be derived to connect $\boldsymbol{\dot{\eta}}$ and $\boldsymbol{\nu}$

$$\dot{\boldsymbol{\eta}} = \boldsymbol{J}(\boldsymbol{\alpha})\boldsymbol{\nu} \tag{2.1}$$

The expression of $J(\alpha)$ is given in Eq. (2.2) and [14].

$$\mathbf{J}(\alpha) = \begin{bmatrix}
\mathbf{J}_{1} & \mathbf{0}_{3\times3} \\
\mathbf{0}_{3\times3} & \mathbf{J}_{2}
\end{bmatrix}$$
(2.2)
$$= \begin{bmatrix}
c(\theta)c(\psi) & s(\phi)s(\theta)c(\psi) - c(\phi)s(\psi) & s(\phi)s(\psi) + c(\phi)s(\theta)c(\psi) & 0 & 0 & 0 \\
c(\theta)s(\psi) & c(\phi)c(\psi) + s(\phi)s(\theta)s(\psi) & c(\phi)s(\theta)s(\psi) - s(\phi)c(\psi) & 0 & 0 & 0 \\
-s(\theta) & s(\phi)c(\theta) & c(\phi)c(\theta) & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & s(\phi)t(\theta) & c(\phi)t(\theta) \\
0 & 0 & 0 & 0 & c(\phi) & -s(\phi) \\
0 & 0 & 0 & 0 & \frac{s(\phi)}{c(\theta)} & \frac{c(\phi)}{c(\theta)}
\end{bmatrix}$$

where $c \equiv \cos, s \equiv \sin$, and $t \equiv \tan$. J_1 is the tensor that transforms a vector's expression in BFF into its expression in EFF and J_2 transforms angular velocities into time derivatives of Euler angles. J_1 and J_2 are rederived in the following section and in Appendix A, respectively.

2.2.1 Derivation of J_1

Assume an arbitrary vector \boldsymbol{C} has expressions of $[x, y, z]^T$ and $[\hat{x}, \hat{y}, \hat{z}]^T$ in EFF and BFF, respectively. $[x, y, z]^T$ equals to $[\hat{x}, \hat{y}, \hat{z}]^T$ only if $\boldsymbol{\alpha} = \boldsymbol{0}$ or \boldsymbol{C} itself is a zero vector. But an equation exists connecting these two expressions. Matrix \boldsymbol{T} is used to denote transformation from $[x, y, z]^T$ to $[\hat{x}, \hat{y}, \hat{z}]^T$

$$\begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix} = \mathbf{T} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \qquad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{J}_1 \cdot \begin{bmatrix} \hat{x} \\ \hat{y} \\ \hat{z} \end{bmatrix}, \qquad \mathbf{J}_1 = \mathbf{T}^{-1}$$
(2.3)

$$\boldsymbol{T} = \boldsymbol{T}_{\phi} \cdot \boldsymbol{T}_{\theta} \cdot \boldsymbol{T}_{\psi} \tag{2.4}$$

where T_{ψ} , T_{θ} , and T_{ϕ} are 3×3 matrices representing effects due to rotations around z-axis, y-axis, and x-axis, respectively. They are shown in Figs. 2.2, 2.3, and 2.4.

Figure 2.2: Rotation around $O'\hat{z}$

Figure 2.3: Rotation around $O'\hat{y}$

Figure 2.4: Rotation around $O'\hat{z}$

T can be obtained by just multiplying T_{ϕ} , T_{θ} , and T_{ψ} together

$$\mathbf{F} = \mathbf{T}_{\phi} \cdot \mathbf{T}_{\theta} \cdot \mathbf{T}_{\psi}$$

$$= \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos(\phi) & \sin(\phi) \\
0 & -\sin(\phi) & \cos(\phi)
\end{bmatrix} \cdot \begin{bmatrix}
\cos(\theta) & 0 & -\sin(\theta) \\
0 & 1 & 0 \\
\sin(\theta) & 0 & \cos(\theta)
\end{bmatrix} \cdot \begin{bmatrix}
\cos(\psi) & \sin(\psi) & 0 \\
-\sin(\psi) & \cos(\psi) & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$= \begin{bmatrix}
c(\theta)c(\psi) & c(\theta)s(\psi) & -s(\theta) \\
s(\phi)s(\theta)c(\psi) - c(\phi)s(\psi) & c(\phi)c(\psi) + s(\phi)s(\theta)s(\psi) & s(\phi)c(\theta) \\
s(\phi)s(\psi) + c(\phi)s(\theta)c(\psi) & c(\phi)s(\theta)s(\psi) - s(\phi)c(\psi) & c(\phi)c(\theta)
\end{bmatrix}$$
(2.8)

$$\boldsymbol{J}_{1} = \boldsymbol{T}^{-1} = \begin{bmatrix} c(\theta)c(\psi) & s(\phi)s(\theta)c(\psi) - c(\phi)s(\psi) & s(\phi)s(\psi) + c(\phi)s(\theta)c(\psi) \\ c(\theta)s(\psi) & c(\phi)c(\psi) + s(\phi)s(\theta)s(\psi) & c(\phi)s(\theta)s(\psi) - s(\phi)c(\psi) \\ -s(\theta) & s(\phi)c(\theta) & c(\phi)c(\theta) \end{bmatrix}$$
(2.9)

Derivation of J_2 can be found in Appendix A.

It should be noted that J_2 is not defined when θ equals to $\pm \frac{\pi}{2}$. In case pitch angle is close to this value, another set of Euler angle representation is needed, which should have different singularity. An alternative way is four-parameter method based on Euler parameters [14].

Chapter 3

GRAVITATIONAL FORCE AND BUOYANCY

Outside forces, including body force and surface force, on a submerged body cause the motion of the body. In this chapter, gravitational force and buoyancy are first expressed in EFF, and then transformed into BFF through Eq. (2.3). In the end, two forces are combined together and expressed in generalized form.

3.1 GRAVITATIONAL FORCE IN BODY COORDINATE SYSTEM

In EFF, gravitational force vector G could be easily expressed as

$$\boldsymbol{G} = \begin{bmatrix} G_x \\ G_y \\ G_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ mg \end{bmatrix}$$
(3.1)

where m is the mass of the SB and g is the magnitude of gravitational acceleration. The point of action of G is located at the center of mass, we use r_G to denote the vector from the origin of BFF (O') to the center of mass. For a rigid body, the expression of r_G in BFF, shown in Eq. (3.2), does not change with time.

$$\boldsymbol{r}_G = [x_G, y_G, z_G]^T \tag{3.2}$$

G's expression in BFF, denoted as $[G_1, G_2, G_3]^T$, could be obtain by letting coordinate system transformation tensor T act on its expression in EFF Eq. (3.1)

$$\begin{bmatrix} G_1 \\ G_2 \\ G_3 \end{bmatrix} = \mathbf{T} \cdot \begin{bmatrix} G_x \\ G_y \\ G_z \end{bmatrix} = \mathbf{T} \cdot \begin{bmatrix} 0 \\ 0 \\ mg \end{bmatrix}$$
$$= \begin{bmatrix} c(\theta)c(\psi) & c(\theta)s(\psi) & -s(\theta) \\ c(\psi)s(\phi)s(\theta) - c(\phi)s(\psi) & c(\phi)c(\psi) + s(\phi)s(\theta)s(\psi) & c(\theta)s(\phi) \\ s(\phi)s(\psi) + c(\phi)c(\psi)s(\theta) & c(\phi)s(\theta)s(\psi) - c(\psi)s(\phi) & c(\phi)c(\theta) \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ mg \end{bmatrix}$$
$$= mg \begin{bmatrix} -s(\theta) \\ c(\theta)s(\phi) \\ c(\phi)c(\theta) \end{bmatrix}$$
(3.3)

3.2 BUOYANCY IN BODY COORDINATE SYSTEM

Similarly, in EFF, the expression of buoyancy force F can be expressed as

$$\boldsymbol{F} = \begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -m_d g \end{bmatrix}$$
(3.4)

where m_d is SB's displacement mass and equals to the multiplication of volume and density of fluid. The acting point of the buoyancy F is SB's centroid and r_F is used to denote the vector from the origin of BFF (O') to the centroid. For a rigid body, the expression of r_F in BFF, shown in Eq. (3.5), does not change with time either.

$$\boldsymbol{r}_F = [x_F, y_F, z_F]^T \tag{3.5}$$

F's expression in BFF, denoted as $[F_1, F_2, F_3]^T$, could be derived through the same process as G before

$$\begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix} = \mathbf{T} \cdot \begin{bmatrix} 0 \\ 0 \\ -m_d g \end{bmatrix} = -m_d g \begin{bmatrix} -s(\theta) \\ c(\theta)s(\phi) \\ c(\phi)c(\theta) \end{bmatrix}$$
(3.6)

3.3 Forces Combination and Generalization

Gravitational force and buoyancy both have stable directions and magnitudes in EFF, so they have similar expressions. For simplicity, we combine them together resulting in a moment as a result of they acting on different points.

As mentioned above, G acts on the center of mass, while F acts on the body's centroid. These two points does not necessarily coincide with each other. If origin of EFF (O') is chosen as the reference point, the two forces will cause a moment, denoted as $M_{O'}$. F_t is used to represent the composite force. In BFF, it has the following expression

$$\boldsymbol{F}_{t} = (m - m_{d})g \begin{bmatrix} -s(\theta) \\ c(\theta)s(\phi) \\ c(\phi)c(\theta) \end{bmatrix}$$
(3.7)

$$\boldsymbol{M}_{O'} = \boldsymbol{r}_{G} \times \boldsymbol{G} + \boldsymbol{r}_{F} \times \boldsymbol{F}$$

$$= g \begin{bmatrix} (my_{G} - m_{d}y_{F})c(\phi)c(\theta) - (mz_{G} - m_{d}z_{F})c(\theta)s(\phi) \\ -(mx_{G} - m_{d}x_{F})c(\phi)c(\theta) - (mz_{G} - m_{d}z_{F})s(\theta) \\ (mx_{G} - m_{d}x_{F})c(\theta)s(\phi) + (my_{G} - m_{d}y_{F})s(\theta) \end{bmatrix}$$
(3.8)

In a further step, for simplicity of expression, combined forces and moments are written in

generalized form $ilde{F}_{GF}$.

$$\tilde{F}_{GF} = \begin{bmatrix} F_t \\ M_{O'} \end{bmatrix}$$

$$= g \begin{bmatrix} -(m-m_d)s(\theta) \\ (m-m_d)c(\theta)s(\phi) \\ (m-m_d)c(\phi)c(\theta) \\ (my_G - m_d y_F)c(\phi)c(\theta) - (mz_G - m_d z_F)c(\theta)s(\phi) \\ -(mx_G - m_d x_F)c(\phi)c(\theta) - (mz_G - m_d z_F)s(\theta) \\ (mx_G - m_d x_F)c(\theta)s(\phi) + (my_G - m_d y_F)s(\theta) \end{bmatrix}$$
(3.9)

If the origin of BFF is located at the centroid of SB, $\mathbf{r}_F = \mathbf{0}$, Eq. (3.9) yields

$$\tilde{F}_{GF} = g \begin{bmatrix} -(m - m_d)s(\theta) \\ (m - m_d)c(\theta)s(\phi) \\ (m - m_d)c(\phi)c(\theta) \\ my_Gc(\phi)c(\theta) - mz_Gc(\theta)s(\phi) \\ -mx_Gc(\phi)c(\theta) - mz_Gs(\theta) \\ mx_Gc(\theta)s(\phi) + my_Gs(\theta) \end{bmatrix}$$
(3.10)

Chapter 4

HYDRODYNAMIC FORCE

In the previous chapter, the generalized form of two static forces, gravitational force and buoyancy, were obtained in Eq. (3.9). In this chapter, added-mass theory [19] for unsteady hydrodynamic forces and moments is introduced and the expressions for hydrodynamic forces and moments are developed in explicit form. Hydrodynamic damping is included at the end as an empirical corrections.

4.1 Added-mass Theory

4.1.1 Assumptions and Expression of Hydrodynamic Force

We assume SB moves in the deep ocean; thus free surface and ocean bottom boundary are considered to be far away and their influences are negligible. In this case, the body is considered to move in a fluid which is infinite in all directions. Added-mass theory can be adopted to calculate the hydrodynamic force and moment. Assuming the fluid is inviscid and irrotational, we have curl of velocity equals to zero everywhere.

$$\boldsymbol{\nabla} \times \boldsymbol{v} = 0 \tag{4.1}$$

Here, velocity v can be expressed as gradient of velocity potential, denoted as Φ .

$$\boldsymbol{v} = \boldsymbol{\nabla}\Phi \tag{4.2}$$

Starting from Euler Equations

$$\rho\left(\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v}\right) = -\boldsymbol{\nabla} p + \rho \boldsymbol{g}$$
(4.3)

Bernoulli Equation for irrotational flow could be derived as

$$\frac{p}{\rho} = -\Phi_t - \frac{1}{2}|\boldsymbol{\nabla}\Phi|^2 + gz \tag{4.4}$$

where pressure is expressed in terms of velocity potential. The gz term, contributing to hydrostatic fore, has been discussed in Chap. 3 as buoyancy. Hence we drop it and write Eq. (4.4) as

$$\frac{p}{\rho} = -\Phi_t - \frac{1}{2} |\boldsymbol{\nabla}\Phi|^2 \tag{4.5}$$

where p is hydrodynamic pressure. Integration of P over the whole body's surface gives hydrodynamic force $\mathbf{F}_d(t)$. Hydrodynamic moment around the origin of BFF (O'), $\mathbf{M}_{dO'}$, is integration of pressure multiplied by position vector over the surface.

$$\boldsymbol{F}_{d}(t) = \int_{B(t)} p\boldsymbol{n} dS \tag{4.6}$$

$$\boldsymbol{M}_{dO'}(t) = \int_{B(t)} p(\boldsymbol{r}_{O'} \times \boldsymbol{n}) dS$$
(4.7)

where B(t) is the object's surface changing with time, $\mathbf{r}_{O'}$ is the position vector starting with origin of BFF (O'), and \mathbf{n} is the normal vector pointing inwards body's surface.

4.1.2 Hydrodynamic Force in terms of Velocity Potential

As in [19], let us take volume V bounded by B(t) and a large sphere surface Σ_R as the control volume. Σ_R is fixed in the EFF with $R \to \infty$. Therefore, the total linear moment of fluid in the control volume is

$$\boldsymbol{M} = \rho \int_{V} \boldsymbol{v} dV = \rho \int_{V} \boldsymbol{\nabla} \Phi dV = \rho \int_{B(t) \bigcup \Sigma_{R}} \Phi \boldsymbol{n} dV$$
(4.8)

Applying momentum theorem on the control volume V, we can get

$$-\boldsymbol{F}_{d}(t) - \int_{\Sigma_{R}} p\boldsymbol{n} dS = \rho \int_{\Sigma_{R}} \Phi_{t} \boldsymbol{n} dS + \rho \frac{d}{dt} \int_{B(t)} \Phi \boldsymbol{n} dS + \rho \int_{\Sigma_{R}} (\boldsymbol{v} \cdot \boldsymbol{n}) \boldsymbol{n} dS$$
(4.9)

The first term on the left-hand side (LHS), $-\mathbf{F}_d(t)$, is the surface force of the body acting on fluid in control volume, the second term on LHS, $\int_{\Sigma_R} p\mathbf{n}dS$, is surface force fluid outside the control volume exerting on control volume. On the right-hand side (RHS), the first two terms represent time derivative of the momentum in the control volume and the last term shows the momentum efflux on boundary Σ_R .

Direct substitution of expression of p in Eq. (4.5) into Eq. (4.9) gives

$$\boldsymbol{F}_{d}(t) = -\rho \frac{d}{dt} \int_{B(t)} \Phi \boldsymbol{n} dS - \rho \int_{\Sigma_{R}} [\boldsymbol{v}(\boldsymbol{v} \cdot \boldsymbol{n}) - \frac{1}{2} (\boldsymbol{v} \cdot \boldsymbol{v}) \boldsymbol{n}] dS$$
(4.10)

Velocity v caused by motion of body has the order of R^{-3} as $R \to \infty$. Also it is known for sphere

$$\int dS = \int_0^{2\pi} \int_0^{\pi} R^2 \sin\theta d\theta d\phi \tag{4.11}$$

Thus, $[\boldsymbol{v}(\boldsymbol{v}\cdot\boldsymbol{n}) - \frac{1}{2}(\boldsymbol{v}\cdot\boldsymbol{v})\boldsymbol{n}]$ has the order of R^{-6} , and its integration over Σ_R should have the order of R^{-4}

$$\rho \int_{\Sigma_R} [\boldsymbol{v}(\boldsymbol{v} \cdot \boldsymbol{n}) - \frac{1}{2} (\boldsymbol{v} \cdot \boldsymbol{v}) \boldsymbol{n}] dS = O\{R^{-4}\}$$
(4.12)

As R approaches infinity, $O\{R^{-4}\}$ decays rapidly to zero. Thus for large R, the second term on the RHS of Eq. (4.10) can be dropped and finally we get a simple expression of hydrodynamic force, $F_d(t)$, in terms of velocity potential Φ

$$\boldsymbol{F}_{d}(t) = -\rho \frac{d}{dt} \int_{B(t)} \Phi \boldsymbol{n} dS$$
(4.13)

Similarly, the total angular momentum around O' in control volume V has the following expression

$$\boldsymbol{L}_{O'} = \rho \int_{V} (\boldsymbol{r}_{O'} \times \boldsymbol{v}) dV = \rho \int_{V} (\boldsymbol{r}_{O'} \times \boldsymbol{\nabla} \Phi) dV = \rho \int_{B(t) \bigcup \Sigma_{R}} \Phi(\boldsymbol{r}_{O'} \times \boldsymbol{n}) dS$$
(4.14)

After control volume analysis and substitution of p, we can obtain hydrodynamic moment $M_{dO'}(t)$ around O'

$$\boldsymbol{M}_{dO'}(t) = -\rho \frac{d}{dt} \int_{B(t)} \Phi(\boldsymbol{r}_{O'} \times \boldsymbol{n}) dS - \rho \int_{\Sigma_R} [(\boldsymbol{v} \cdot \boldsymbol{n})(\boldsymbol{r}_{O'} \times \boldsymbol{v}) - \frac{1}{2} (\boldsymbol{v} \cdot \boldsymbol{v})(\boldsymbol{r}_{O'} \times \boldsymbol{n})] dS \qquad (4.15)$$

Term $\rho \int_{\Sigma_R} [(\boldsymbol{v} \cdot \boldsymbol{n})(\boldsymbol{r}_{O'} \times \boldsymbol{v}) - \frac{1}{2}(\boldsymbol{v} \cdot \boldsymbol{v})(\boldsymbol{r}_{O'} \times \boldsymbol{n})] dS$ has the order of R^{-3} and decays fast as $R \to \infty$. We drop it and finally obtain hydrodynamic moment expressed in terms of velocity potential

$$\boldsymbol{M}_{dO'}(t) = -\rho \frac{d}{dt} \int_{B(t)} \Phi(\boldsymbol{r}_{O'} \times \boldsymbol{n}) dS$$
(4.16)

4.1.3 Kirchhoff Decomposition

As mentioned before, n is the normal vector pointing inwards S; for a rigid body in BFF, n does not depend on time. Also in either coordinate system, velocity at any point on body surface can be described by velocity at the origin, $v_{O'}$, angular velocity, ω , and relative position vector, $r_{O'}$, as

$$\boldsymbol{v} = \boldsymbol{v}_{O'} + \boldsymbol{\omega} \times \boldsymbol{r}_{O'} \tag{4.17}$$

Velocity potential $\hat{\Phi}$ observed in BFF must satisfy the kinematic boundary condition

$$\boldsymbol{v} \cdot \boldsymbol{n}|_{B} = \left. \frac{\partial \hat{\Phi}}{\partial \hat{x}} n_{1} + \frac{\partial \hat{\Phi}}{\partial \hat{y}} n_{2} + \frac{\partial \hat{\Phi}}{\partial \hat{z}} n_{3} \right|_{B}$$
(4.18)

where

$$\boldsymbol{v} \cdot \boldsymbol{n}|_{B} = \boldsymbol{v}_{O'} \cdot \boldsymbol{n} + (\boldsymbol{\omega} \times \boldsymbol{r}_{O'}) \cdot \boldsymbol{n} = \boldsymbol{v}_{O'} \cdot \boldsymbol{n} + \boldsymbol{\omega} \cdot (\boldsymbol{r}_{O'} \times \boldsymbol{n})$$
(4.19)

So the boundary condition for $\hat{\Phi}$ is:

$$\hat{\Phi}_1 n_1 + \hat{\Phi}_2 n_2 + \hat{\Phi}_3 n_3 \Big|_B = \begin{cases} u_1 n_1 + u_2 n_2 + u_3 n_3 + \omega_1 [\hat{y} n_3 - \hat{z} n_2] \\ + \omega_2 [\hat{z} n_1 - \hat{x} n_3] + \omega_3 [\hat{x} n_2 - \hat{y} n_1] \end{cases} \Big|_B$$

$$(4.20)$$

where subscripts 1, 2, and 3 represent a vector's component in directions $O'\hat{x}$, $O'\hat{y}$, and $O'\hat{z}$, respectively. Above boundary condition suggests the Kirchoff Decomposition of $\hat{\Phi}$

$$\hat{\Phi} = \sum_{i=1}^{6} \phi_i u_i \tag{4.21}$$

where $[u_4, u_5, u_6]^T \equiv [\omega_1, \omega_2, \omega_3]^T$ and ϕ_i is called unit potential and defined as follows

$$\frac{\partial \phi_1}{\partial n} = n_1 \quad \frac{\partial \phi_4}{\partial n} = (\hat{y}n_3 - \hat{z}n_2) = n_4$$

$$\frac{\partial \phi_2}{\partial n} = n_2 \quad \frac{\partial \phi_5}{\partial n} = (\hat{z}n_1 - \hat{x}n_3) = n_5$$

$$\frac{\partial \phi_3}{\partial n} = n_3 \quad \frac{\partial \phi_6}{\partial n} = (\hat{x}n_2 - \hat{y}n_1) = n_6$$
(4.22)

in which, $\frac{\partial}{\partial n}$ denotes directional derivative in \boldsymbol{n} 's direction. It should be noted that $[u_1, u_2, u_3, u_4, u_5, u_6]^T$ is the same as $[u, v, w, p, q, r]^T$, which is notation suggested by [18] and used in other chapters. In addition, unit potentials, according to their definitions in Eq. (4.22), only depend on SB's geometry property and does not change with time.

4.1.4 Added Masses

Although $\mathbf{F}_d(t)$ and $\mathbf{M}_{dO'}(t)$ in Eqs. (4.13) and (4.16) are expressed in terms of velocity potential Φ in EFF, $\hat{\Phi}$ can replace Φ and satisfies these two equations because $\hat{\Phi}$, same as Φ , is velocity potential for the velocity relative to inertia frame. But it is observed in BFF

$$\boldsymbol{v} = \frac{\partial \hat{\Phi}}{\partial \hat{x}} \hat{\boldsymbol{e}}_1 + \frac{\partial \hat{\Phi}}{\partial \hat{y}} \hat{\boldsymbol{e}}_2 + \frac{\partial \hat{\Phi}}{\partial \hat{z}} \hat{\boldsymbol{e}}_3 \tag{4.23}$$

where $[\hat{\boldsymbol{e}}_1, \hat{\boldsymbol{e}}_2, \hat{\boldsymbol{e}}_3]^T$ is the orthonormal basis of BFF. Expression of $\hat{\Phi}$ was developed through analyzing kinematic boundary condition on body surface, shown in Eqs. (4.21) and (4.22). Substitution of $\hat{\Phi}$'s expression in terms of unit potential into $\boldsymbol{F}_{d(t)}$ and $\boldsymbol{M}_{dO'}(t)$ leads to

$$\boldsymbol{F}_{d}(t) = -\rho \frac{d}{dt} \left[u_{i} \int_{B} \phi_{i} \frac{\partial \phi_{j}}{\partial n} \, dS \right] \hat{\boldsymbol{e}}_{j} \tag{4.24}$$

$$\boldsymbol{M}_{dO'}(t) = -\rho \frac{d}{dt} \left[u_i \int_B \phi_i \frac{\partial \phi_{k+3}}{\partial n} \ dS \right] \hat{\boldsymbol{e}}_k \tag{4.25}$$

where i=1,2,...,6, and j,k=1,2,3.

Introducing the definition of added mass μ_{ji} as

$$\mu_{ji} = \rho \int_{B} \phi_i \frac{\partial \phi_j}{\partial n} dS \tag{4.26}$$

we can write Eqs. (4.24) and (4.25) as

$$\boldsymbol{F}_d(t) = -\frac{d}{dt} \left[u_i \cdot \mu_{ji} \right] \hat{\boldsymbol{e}}_j \tag{4.27}$$

$$\boldsymbol{M}_{dO'}(t) = -\frac{d}{dt} \left[u_i \cdot \mu_{(k+3)i} \right] \hat{\boldsymbol{e}}_k$$
(4.28)

The final expressions of hydrodynamic force and moment are expressed as

$$\boldsymbol{F}_{d}(t) = -[\dot{u}_{i}(t)\mu_{ji} + u_{i}\varepsilon_{jkl}\omega_{k}\mu_{li}]\hat{\boldsymbol{e}}_{j}$$

$$(4.29)$$

$$\boldsymbol{M}_{dO'}(t) = -[\dot{u}_i(t)\mu_{j+3,i} + u_i\varepsilon_{jkl}\omega_k\mu_{l+3,i} + u_i\varepsilon_{jkl}u_k\mu_{li}]\hat{\boldsymbol{e}}_j$$
(4.30)

Here, ε_{ijk} is called alternating tensor and has the value of 1, 0, and -1 when *i*, *j*, and *k* are cylic, repeated, and acylic, respectively.

4.2 Added Masses for a Prolate Spheroid

In section 4.1.2, hydrodynamic force and moment are developed in Eqs. (4.29) and (4.30). It is noted that \mathbf{F}_d and $\mathbf{M}_{dO'}$ are decomposed into time-varying velocity and acceleration and timeindependent added mass. Added mass only depends on SB's geometry and if added mass is given, \mathbf{F}_d and $\mathbf{M}_{dO'}$ are only functions of velocity and acceleration. For object in shape of prolate spheroid, shown in Fig. 4.1, if origin of BFF is placed at the centroid, expression of added mass can be greatly simplified due to its symmetry and could be found in [20, 21].

Figure 4.1: Prolate spheroid

4.2.1 Symmetry Effects

Prolate spheroid is symmetric about all three planes, as shown in Tab. 4.1

Symmetry	Plane
port-and-starboard	$O'\hat{x}\hat{z}$
fore-and-aft	$O'\hat{y}\hat{z}$
top-and-bottom	$O'\hat{x}\hat{y}$

Table 4.1: Symmetry of prolate spheroid

Because of the top-bottom symmetry, the components of the normal vector satisfy

$$n_{1}(\hat{x}, \hat{y}, \hat{z}) = n_{1}(\hat{x}, \hat{y}, -\hat{z})$$

$$n_{2}(\hat{x}, \hat{y}, \hat{z}) = n_{2}(\hat{x}, \hat{y}, -\hat{z})$$

$$n_{3}(\hat{x}, \hat{y}, \hat{z}) = -n_{3}(\hat{x}, \hat{y}, -\hat{z})$$

$$n_{4}(\hat{x}, \hat{y}, \hat{z}) = \hat{y}n_{3} - \hat{z}n_{2} = -n_{4}(\hat{x}, \hat{y}, -\hat{z})$$

$$n_{5}(\hat{x}, \hat{y}, \hat{z}) = \hat{z}n_{1} - \hat{x}n_{3} = -n_{5}(\hat{x}, \hat{y}, -\hat{z})$$

$$n_{6}(\hat{x}, \hat{y}, \hat{z}) = \hat{x}n_{2} - \hat{y}n_{1} = n_{6}(\hat{x}, \hat{y}, -\hat{z})$$
(4.31)

According to the relationship between unit potential and components of normal vector expressed in Eqs. (4.22), the unit potentials at $[\hat{x}, \hat{y}, \hat{z}]$ and $[\hat{x}, \hat{y}, -\hat{z}]$ have the relation of

$$\phi_{1,2,6}(\hat{x}, \hat{y}, \hat{z}) = \phi_{1,2,6}(\hat{x}, \hat{y}, -\hat{z})
\phi_{3,4,5}(\hat{x}, \hat{y}, \hat{z}) = -\phi_{3,4,5}(\hat{x}, \hat{y}, -\hat{z})$$
(4.32)

If we recall the definition of μ_{ji} in Eqs. (4.26), the substitution and integration result in

$$\mu_{13} = \mu_{14} = \mu_{15} = \mu_{23} = \mu_{24} = \mu_{25} = \mu_{36} = \mu_{46} = \mu_{56} = 0 \tag{4.33}$$

Similarly, due to the fore-and-aft and port-and-starboard symmetries, we have

$$\mu_{12} = \mu_{13} = \mu_{14} = \mu_{25} = \mu_{35} = \mu_{45} = \mu_{26} = \mu_{36} = \mu_{46} = 0$$

$$\mu_{12} = \mu_{23} = \mu_{25} = \mu_{14} = \mu_{34} = \mu_{45} = \mu_{16} = \mu_{36} = \mu_{56} = 0$$
(4.34)

The added mass matrix, μ , is greatly simplified into a diagonal matrix

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_{11} & 0 & 0 & 0 & 0 & 0 \\ 0 & \mu_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & \mu_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & \mu_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu_{66} \end{bmatrix}$$
(4.35)

Besides, considering the fact that prolate spheroid is a solid of revolution about $O'\hat{x}$ axis, $O'\hat{y}$ and $O'\hat{z}$ consist an arbitrarily set of base for the transverse middle plane that is perpendicular to $O'\hat{x}$. Also it can be seen that body with accelerations of the same magnitude along $O'\hat{y}$ and $O'\hat{z}$ undergo hydrodynamic forces of the same magnitude, so does hydrodynamic moments of rotating around $O'\hat{y}$ and $O'\hat{z}$. According to the physical meaning of added mass, we have

$$\mu_{33} = \mu_{22} \tag{4.36}$$
$$\mu_{66} = \mu_{55}$$

Furthermore, as mentioned above, prolate spheroid is a body of revolution about $O'\hat{x}$ axis; hence each transverse section is in circular shape, as shown in Fig. 4.2

Figure 4.2: Transverse section

At any point $(\hat{x}, \hat{y}, \hat{z})$ on SB's surface, n_4 is expressed as

$$n_4(\hat{x}, \hat{y}, \hat{z}) = \hat{y}n_3 - \hat{z}n_2 \tag{4.37}$$

where \hat{y} , \hat{z} , n_2 , and n_3 can be expressed in terms of radius $r(\hat{x})$ and angle ϕ . $r(\hat{x})$ is a constant in each transverse section but changing with \hat{x}

$$\hat{y} = r(\hat{x}) \cdot \cos \phi$$

$$\hat{z} = r(\hat{x}) \cdot \sin \phi$$

$$n_2 = -\cos \phi$$

$$n_3 = -\sin \phi$$
(4.38)

Substitution of Eq. (4.38) into Eq. (4.37) gives $n_4(\hat{x}, \hat{y}, \hat{z}) = 0$; thus ϕ_4 equals to zero.

$$\mu_{44} = \rho \int_{B(t)} \phi_4 \frac{\partial \phi_4}{\partial n} dS = 0 \tag{4.39}$$

The final version of added mass matrix for prolate spheroid only has three independent variables μ_{11} , $\mu_{33} = \mu_{22}$, and $\mu_{66} = \mu_{55}$.

4.2.2 Analytical Solution for Added Mass of Prolate Spheroid

There are two geometry factor for a prolate spheroid, major axis 2a and minor axis 2b, shown in Fig. 4.1. Eccentricity of the meridian elliptical section, denoted as e, is defined as

$$e^{2} \equiv 1 - (\frac{b}{a})^{2} = 1 - \bar{b}^{2} \tag{4.41}$$

Analytical solutions of μ_{11} , μ_{22} , and μ_{55} depend on a, b, and density of fluid, which can be found in [20, 21]

$$\mu_{11} = \frac{k_1}{2 - k_2} \frac{4}{3} \pi \rho a b^2 \tag{4.42a}$$

$$\mu_{22} = \frac{k_2}{2 - k_2} \frac{4}{3} \pi \rho a b^2 \tag{4.42b}$$

$$\mu_{55} = -\frac{1}{5} \frac{(b^2 - a^2)^2 (k_2 - k_1)}{2(b^2 - a^2) + (b^2 + a^2)(k_2 - k_1)} \frac{4}{3} \pi \rho a b^2$$
(4.42c)

where k_1 and k_2 are two dimensionless factors

$$k_1 = \frac{2(1-e^2)}{e^3} \left(\frac{1}{2}\ln\frac{1+e}{1-e} - e\right)$$
(4.43a)

$$k_2 = \frac{1}{e^2} - \frac{1 - e^2}{2e^3} \ln \frac{1 + e}{1 - e}$$
(4.43b)

4.3 Hydrodynamic Force and Moment for Prolate Spheroid

Given fluid density and lengths of major and minor axes, μ_{11} , μ_{22} , and μ_{55} can be obtained through Eqs. (4.42). Substitution of simplified added mass μ in Eq. (4.40) into Eqs. (4.29) and (4.30) gives the expression of hydrodynamic force F_d and moment $M_{dO'}$

$$F_{d} = F_{d1}\hat{e}_{1} + F_{d2}\hat{e}_{2} + F_{d3}\hat{e}_{3}$$

$$M_{dO'} = M_{d1}\hat{e}_{1} + M_{d2}\hat{e}_{2} + M_{d3}\hat{e}_{3}$$
(4.44)

where

$$F_{d1} = -\dot{u}_{1}\mu_{11} + \mu_{22}u_{2}\omega_{3} - \mu_{33}u_{3}\omega_{2} = -\dot{u}_{1}\mu_{11} + \mu_{22}[u_{2}\omega_{3} - u_{3}\omega_{2}]$$

$$F_{d2} = -\dot{u}_{2}\mu_{22} + u_{3}\omega_{1}\mu_{33} - u_{1}\omega_{3}\mu_{11} = \mu_{22}(u_{3}\omega_{1} - \dot{u}_{2}) - u_{1}\omega_{3}\mu_{11}$$

$$F_{d3} = -\dot{u}_{3}\mu_{22} + u_{1}\omega_{2}\mu_{11} - u_{2}\omega_{1}\mu_{22} = -\mu_{22}(\dot{u}_{3} + u_{2}\omega_{1}) + u_{1}\omega_{2}\mu_{11}$$

$$M_{d1} = 0$$

$$M_{d2} = \mu_{66}\omega_{1}\omega_{3} - \mu_{55}\dot{\omega}_{2} + u_{1}u_{3}\mu_{33} - u_{1}u_{3}\mu_{11} = \mu_{55}[\omega_{1}\omega_{3} - \dot{\omega}_{2}] + u_{1}u_{3}[\mu_{22} - \mu_{11}]$$

$$M_{d3} = -\mu_{66}\dot{\omega}_{3} - \mu_{55}\omega_{1}\omega_{2} + u_{1}u_{2}[\mu_{11} - \mu_{22}] = -\mu_{55}[\dot{\omega}_{3} + \omega_{1}\omega_{2}] + u_{1}u_{2}[\mu_{11} - \mu_{22}]$$
(4.45)

Generalized hydrodynamic force, \tilde{F}_d , is shown below by combining hydrodynamic force and moment and replacing notation $[u_1, u_2, u_3, \omega_1, \omega_2, \omega_3]^T$ with $[u, v, w, p, q, r]^T$

4.4 Hydrodynamic Damping

In the previous three sections, added-mass theory was introduced and analytical solutions of addedmass for prolate spheroid was presented, based on which, expression of generalized hydrodynamic force is obtained in Eq. (4.46). In added-mass theory, fluid is assumed to be inviscid and the flow irrotational, but in the real condition, viscous effects might not be negligible. [14] suggests the following expression of hydrodynamic damping \tilde{F}_{dp}

$$\tilde{\boldsymbol{F}}_{dp} = \boldsymbol{D}(\boldsymbol{\nu}) \cdot \boldsymbol{\nu} \tag{4.47}$$

in which, $\boldsymbol{D}(\boldsymbol{\nu})$ has four main components

$$\boldsymbol{D}(\boldsymbol{\nu}) \equiv \boldsymbol{D}_P(\boldsymbol{\nu}) + \boldsymbol{D}_S(\boldsymbol{\nu}) + \boldsymbol{D}_W(\boldsymbol{\nu}) + \boldsymbol{D}_M(\boldsymbol{\nu})$$
(4.48)

where $D_P(\nu)$ represents potential damping effects, $D_S(\nu)$ represents linear and quadratic skin friction due to laminar and turbulent boundary layers, respectively, $D_W(\nu)$ is wave drift damping, and $D_M(\nu)$ is damping due to vortex shedding.

Since SB is symmetric about all three planes and moves in deep water, expression of $D(\nu)$ having linear and quadratic terms on diagonal can be used as a rough approximation of the damping effects [14, 22, 9].

$$\boldsymbol{D}(\boldsymbol{\nu}) = - \begin{bmatrix} X_u & 0 & 0 & 0 & 0 & 0 \\ 0 & Y_v & 0 & 0 & 0 & 0 \\ 0 & 0 & Z_w & 0 & 0 & 0 \\ 0 & 0 & 0 & K_p & 0 & 0 \\ 0 & 0 & 0 & 0 & M_q & 0 \\ 0 & 0 & 0 & 0 & 0 & N_r \end{bmatrix} - \begin{bmatrix} X_{u|u|}|u| & 0 & 0 & 0 & 0 & 0 \\ 0 & Y_{v|v|}|v| & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & M_{q|q|}|q| & 0 \\ 0 & 0 & 0 & 0 & 0 & M_{q|q|}|q| & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & N_{r|r|}|r| \end{bmatrix}$$

$$= - \begin{bmatrix} X_u + X_{u|u|}|u| & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & Y_v + Y_{v|v|}|v| & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & Z_w + Z_{w|w|}|w| & 0 & 0 & 0 \\ 0 & 0 & 0 & K_p + K_{p|p|}|p| & 0 & 0 \\ 0 & 0 & 0 & 0 & M_q + M_{q|q|}|q| & 0 \\ 0 & 0 & 0 & 0 & 0 & N_r + N_{r|r|}|r| \end{bmatrix}$$
(4.49)

In real, damping of a high-speed underwater vehicle is highly nonlinear and coupled [16]. Hydrodynamic damping coefficients need to be determined.

Chapter 5

Equations of Motion

In previous chapters, gravitational force, buoyancy, and hydrodynamic force were studied; this chapter will discuss the derivation of equations of motion, non-dimensionalization, and analysis of these equations.

5.1 Equations of Motion

Newton's Second Law gives

$$\boldsymbol{F}_r = m\boldsymbol{a}_G \tag{5.1}$$

where \mathbf{F}_r is resultant force, m is the mass of SB and \mathbf{a}_G is the acceleration of SB's center of mass in an inertial frame of reference. The expression of \mathbf{a}_G shown in equation Eq. (5.2), is derived in Appendix B and can also be found in [14].

$$\boldsymbol{a}_{G} = \boldsymbol{\mathring{v}}_{O'} + \boldsymbol{\omega} \times \boldsymbol{v}_{O'} + \boldsymbol{\mathring{\omega}} \times \boldsymbol{r}_{G} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{r}_{G})$$
(5.2)

where $v_{O'}$ is the velocity of BFF's origin measured in EFF, and $\dot{v}_{O'}$ is its time derivative with respect to BFF. $\boldsymbol{\omega}$ is angular velocity of BFF about O', $\dot{\boldsymbol{\omega}} = \dot{\boldsymbol{\omega}}$ is angular acceleration about O', and r_G is a vector pointing at center of mass from O'.

Similarly, torque and angular acceleration are connected by Euler equations Eq. (5.3).

$$\boldsymbol{M}_{\boldsymbol{r}_{O'}} = \boldsymbol{I}_{O'} \boldsymbol{\mathring{\omega}} + \boldsymbol{\omega} \times (\boldsymbol{I}_{O'} \boldsymbol{\omega}) + m \boldsymbol{r}_{G} \times (\boldsymbol{\mathring{v}}_{O'} + \boldsymbol{\omega} \times \boldsymbol{v}_{O'})$$
(5.3)

where $M_{r_{O'}}$ is resultant torque around O' and $I_{O'}$ is inertial tensor referred to BFF

$$\mathbf{I}_{O'} = \begin{bmatrix} I_x & -I_{xy} & -I_{xz} \\ -I_{yx} & I_y & -I_{yz} \\ -I_{zx} & -I_{zy} & I_z \end{bmatrix}$$
(5.4)

in which,

$$I_{x} = \int (\hat{y}^{2} + \hat{z}^{2}) dm$$

$$I_{y} = \int (\hat{x}^{2} + \hat{z}^{2}) dm$$

$$I_{z} = \int (\hat{x}^{2} + \hat{y}^{2}) dm$$

$$I_{xy} = I_{yx} = \int \hat{x}\hat{y} dm$$

$$I_{xz} = I_{zx} = \int \hat{x}\hat{z} dm$$

$$I_{yz} = I_{zy} = \int \hat{y}\hat{z} dm$$
(5.5)

In BFF, $v_{O'}, \, \mathring{v}_{O'}, \, \omega, \, \mathring{\omega}$, and r_G are expressed as

$$\boldsymbol{v}_{O'} = \begin{bmatrix} u \\ v \\ w \end{bmatrix}, \quad \boldsymbol{v}_{O'} = \begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{bmatrix}, \quad \boldsymbol{\omega} = \begin{bmatrix} p \\ q \\ r \end{bmatrix}, \quad \boldsymbol{\omega} = \begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix}, \quad \boldsymbol{r}_{G} = \begin{bmatrix} x_{G} \\ y_{G} \\ z_{G} \end{bmatrix}$$
(5.6)

Substitution of all variables' expressions in Eqs. (5.4) and (5.6) into Eqs. (5.2) and (5.3) results in

$$\begin{bmatrix} \mathbf{F}_{r} \\ \mathbf{M}_{r_{O'}} \end{bmatrix} = \tilde{\mathbf{M}} \cdot \begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \\ \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} + \begin{bmatrix} \mathbf{0}_{3\times3} & \mathbf{D}_{12} \\ \mathbf{D}_{21} & \mathbf{D}_{22} \end{bmatrix} \cdot \begin{bmatrix} u \\ v \\ w \\ p \\ q \\ r \end{bmatrix}$$
(5.7)

where

$$\tilde{\boldsymbol{M}} = \begin{bmatrix} m & 0 & 0 & 0 & mz_{G} & -my_{G} \\ 0 & m & 0 & -mz_{G} & 0 & mx_{G} \\ 0 & 0 & m & my_{G} & -mx_{G} & 0 \\ 0 & -mz_{G} & my_{G} & I_{x} & -I_{xy} & -I_{xz} \\ mz_{G} & 0 & -mx_{G} & -I_{yx} & I_{y} & -I_{yz} \\ -my_{G} & mx_{G} & 0 & -I_{zx} & -I_{zy} & I_{z} \end{bmatrix}$$
(5.8a)
$$\boldsymbol{D}_{12} = \begin{bmatrix} m(y_{G}q + z_{G}r) & -m(x_{G}q - w) & -m(x_{G}r + v) \\ -m(y_{G}p + w) & m(z_{G}r + x_{G}p) & -m(y_{G}r - u) \\ -m(z_{G}p - v) & -m(z_{G}q + u) & m(x_{G}p + y_{G}q) \end{bmatrix}$$
(5.8b)
$$\boldsymbol{D}_{21} = \begin{bmatrix} -m(y_{G}q + z_{G}r) & m(y_{G}p + w) & m(z_{G}p - v) \\ m(x_{G}q - w) & -m(z_{G}r + x_{G}p) & m(z_{G}q + u) \\ m(x_{G}r + v) & m(y_{G}r - u) & -m(x_{G}p + y_{G}q) \end{bmatrix}$$
(5.8c)
$$\boldsymbol{D}_{22} = \begin{bmatrix} 0 & -I_{yz}q - I_{xz}p + I_{z}r & I_{yz}r + I_{xy}p - I_{y}q \\ I_{yz}q + I_{xz}p - I_{z}r & 0 & -I_{xz}r - I_{xy}q + I_{x}p \\ -I_{yz}r - I_{xy}p + I_{y}q & I_{xz}r + I_{xy}q - I_{xp} & 0 \end{bmatrix}$$
(5.8d)

Resultant force and torque consist of four components: gravitational force, buoyancy, hy-

drodynamic force, and hydrodynamic damping, shown in Eq. (5.9).

$$\begin{bmatrix} \boldsymbol{F}_r \\ \boldsymbol{M}_{r_{O'}} \end{bmatrix} = \tilde{\boldsymbol{F}}_{GF} + \tilde{\boldsymbol{F}}_d + \tilde{\boldsymbol{F}}_{dp}$$
(5.9)

Combination of Eqs. (5.7) and (5.9) gives

$$\tilde{\boldsymbol{F}}_{GF} + \tilde{\boldsymbol{F}}_{d} + \tilde{\boldsymbol{F}}_{dp} = \tilde{\boldsymbol{M}} \cdot \begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \\ \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} + \begin{bmatrix} \boldsymbol{0}_{3\times3} & \boldsymbol{D}_{12} \\ \hline \boldsymbol{D}_{21} & \boldsymbol{D}_{22} \end{bmatrix} \cdot \begin{bmatrix} u \\ v \\ w \\ p \\ q \\ r \end{bmatrix}$$
(5.10)

Substitution of \tilde{F}_{GF} , \tilde{F}_d , and \tilde{F}_{dp} in Eqs. (3.10), (4.46), (4.47), and (4.49) into Eq. (5.10) results in the final equations of motion.

$$\boldsymbol{M} \cdot \begin{bmatrix} \dot{\boldsymbol{u}} \\ \dot{\boldsymbol{v}} \\ \dot{\boldsymbol{w}} \\ \dot{\boldsymbol{p}} \\ \dot{\boldsymbol{q}} \\ \dot{\boldsymbol{r}} \end{bmatrix} = \begin{bmatrix} \mathbf{\Lambda}_{11} & \mathbf{\Lambda}_{12} \\ \mathbf{\Lambda}_{21} & \mathbf{\Lambda}_{22} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \\ \boldsymbol{w} \\ \boldsymbol{p} \\ \boldsymbol{q} \\ \boldsymbol{r} \end{bmatrix} + g \begin{bmatrix} -(m-m_d)s(\theta) \\ (m-m_d)c(\theta)s(\phi) \\ (m-m_d)c(\phi)c(\theta) \\ m(y_Gc(\phi)c(\theta) - z_Gc(\theta)s(\phi)) \\ -m(x_Gc(\phi)c(\theta) + z_Gs(\theta)) \\ m(x_Gc(\theta)s(\phi) + y_Gs(\theta)) \end{bmatrix}$$
(5.11)

where

$$\boldsymbol{M} = \begin{bmatrix} m + \mu_{11} & 0 & 0 & 0 & mz_G & -my_G \\ 0 & m + \mu_{22} & 0 & -mz_G & 0 & mx_G \\ 0 & 0 & m + \mu_{22} & my_G & -mx_G & 0 \\ 0 & -mz_G & my_G & I_x & -I_{xy} & -I_{xz} \\ mz_G & 0 & -mx_G & -I_{yx} & I_y + \mu_{55} & -I_{yz} \\ -my_G & mx_G & 0 & -I_{zx} & -I_{zy} & I_z + \mu_{55} \end{bmatrix}$$
(5.12a)
$$\boldsymbol{\Lambda}_{11} = \begin{bmatrix} -(X_u + X_{u|u|}|u|) & 0 & 0 \\ 0 & -(Y_v + Y_{v|v|}|v|) & 0 \\ 0 & 0 & -(Z_w + Z_{w|w|}|w|) \end{bmatrix}$$
(5.12b)

$$\mathbf{\Lambda}_{12} = \begin{bmatrix}
-m(y_Gq + z_Gr) & m(x_Gq - w) - \mu_{22}w & m(x_Gr + v) + \mu_{22}v \\
m(y_Gp + w) + \mu_{22}w & -m(z_Gr + x_Gp) & m(y_Gr - u) - \mu_{11}u \\
m(z_Gp - v) - \mu_{22}v & m(z_Gq + u) + \mu_{11}u & -m(x_Gp + y_Gq)
\end{bmatrix}$$

$$\mathbf{\Lambda}_{21} = \begin{bmatrix}
m(y_Gq + z_Gr) & -m(y_Gp + w) & -m(z_Gp - v) \\
-m(x_Gq - w) + \mu_{22}w & m(z_Gr + x_Gp) & -m(z_Gq + u) - \mu_{11}u \\
-m(x_Gr + v) - \mu_{22}v & -m(y_Gr - u) + \mu_{11}u & m(x_Gp + y_Gq)
\end{bmatrix}$$

$$\mathbf{\Lambda}_{22} = \begin{bmatrix}
-(K_p + K_{p|p|}|p|) & I_{yz}q + I_{xz}p - I_zr & -I_{yz}r - I_{xy}p + I_yq \\
-I_{yz}q - I_{xz}p + I_zr & -(M_q + M_{q|q|}|q|) & I_{xz}r + I_{xy}q - I_xp + \mu_{55}p \\
I_{yz}r + I_{xy}p - I_yq & -I_{xz}r - I_{xy}q + I_xp - \mu_{55}p & -(N_r + N_{r|r|}|r|)
\end{bmatrix}$$
(5.12c)
$$(5.12c) = \begin{bmatrix}
-m(y_Gq + z_Gr) & -m(z_Gq + u) - \mu_{11}u \\
-m(x_Gr + v) - \mu_{22}v & -m(y_Gr - u) + \mu_{11}u & m(x_Gp + y_Gq)
\end{bmatrix}$$
(5.12c)
$$\mathbf{\Lambda}_{22} = \begin{bmatrix}
-(K_p + K_{p|p|}|p|) & I_{yz}q + I_{xz}p - I_zr & -I_{yz}r - I_{xy}p + I_yq \\
-I_{yz}q - I_{xz}p + I_zr & -(M_q + M_{q|q|}|q|) & I_{xz}r + I_{xy}q - I_xp + \mu_{55}p \\
-I_{yz}r + I_{xy}p - I_yq & -I_{xz}r - I_{xy}q + I_xp - \mu_{55}p & -(N_r + N_{r|r|}|r|)
\end{bmatrix}$$

5.2 NON-DIMENSIONALIZATION

In previous section, Eq. (5.10) was derived to describe SB's motion. In this section, dimensions of all the variables will be checked and Eq. (5.10) will be rewritten in its dimensionless form. All variables included in this problem are listed in Tab. 5.1 and they are expressed in terms of basic dimensions: M(mass), T(time), and L(length).

Variables	Dimensions	Variables	Dimensions	Variables	Dimensions
2a	[L]	$2\mathrm{b}$	[L]	x	[L]
y	[L]	z	[L]	x_G	[L]
y_G	[L]	z_G	[L]	m	[M]
m_d	[L]	μ_{11}	[M]	μ_{22}	[M]
I_x	$[ML^2]$	I_{xy}	$[ML^2]$	I_{xz}	$[ML^2]$
I_{yx}	$[ML^2]$	I_y	$[ML^2]$	I_{yz}	$[ML^2]$
I_{zx}	$[ML^2]$	I_{zy}	$[ML^2]$	I_z	$[ML^2]$
μ_{55}	$[ML^2]$	ϕ	$[\mathbf{I}]$	heta	[I]
ψ	$[\mathbf{I}]$	g	$[LT^{-2}]$	u	$[LT^{-1}]$
v	$[LT^{-1}]$	w	$[LT^{-1}]$	p	$[T^{-1}]$
q	$[T^{-1}]$	r	$[T^{-1}]$	\dot{u}	$[LT^{-2}]$
\dot{v}	$[LT^{-2}]$	\dot{w}	$[LT^{-2}]$	\dot{p}	$[T^{-2}]$
\dot{q}	$[T^{-2}]$	\dot{r}	$[T^{-2}]$	X_u	$[MT^{-1}]$
Y_v	$[MT^{-1}]$	Z_w	$[MT^{-1}]$	K_p	$[ML^2T^{-1}]$
M_q	$[\mathrm{ML}^{2}\mathrm{T}^{\text{-}1}]$	N_r	$[\mathrm{ML}^{2}\mathrm{T}^{\text{-}1}]$	$X_{u u }$	$[ML^{-1}]$
$Y_{v v }$	$[ML^{-1}]$	$Z_{w w }$	$[ML^{-1}]$	$K_{p p }$	$[ML^2]$
$M_{q q }$	$[ML^2]$	$N_{r r }$	$[ML^2]$		

Table 5.1: Dimensions of variables

Here, ϕ , θ , and ψ themselves are dimensionless and [I] is used to denote this property.

Length of the major axis 2a, displacement mass m_d , and gravitational acceleration g are chosen as the three principal variables. Then, all the variables in Tab. 5.1 can be expressed in terms of these three principal variables. Dimensionless form of all the variables could be obtained

Dimensionless variables	Expressions	Dimensionless variables Expressions		Dimensionless variables	Expressions
\overline{b}	$\frac{2b}{2a}$	\bar{x}	$\frac{x}{2a}$	$ar{y}$	$\frac{y}{2a}$
\overline{z}	$\frac{z}{2a}$	\bar{x}_G	$\frac{x_G}{2a}$	$ar{y}_G$	$\frac{y_G}{2a}$
$ar{z}_G$	$\frac{z_G}{2a}$	\bar{m}	$rac{m}{m_d}$	$ar{\mu}_{11}$	$rac{\mu_{11}}{m_d}$
$ar{\mu}_{22}$	$rac{\mu_{22}}{m_d}$	$ar{I}_x$	$\frac{I_x}{4m_d a^2}$	$ar{I}_{xy}$	$\frac{I_{xy}}{4m_d a^2}$
$ar{I}_{xz}$	$\frac{I_{xz}}{4m_d a^2}$	$ar{I}_{yx}$	$\frac{I_{yx}}{4m_d a^2}$	$ar{I}_y$	$\frac{I_y}{4m_d a^2}$
$ar{I}_{yz}$	$\frac{I_{yz}}{4m_d a^2}$	$ar{I}_{zx}$	$\frac{I_{zx}}{4m_d a^2}$	$ar{I}_{zy}$	$\frac{I_{zy}}{4m_d a^2}$
$ar{I}_z$	$\frac{I_z}{4m_d a^2}$	$ar{\mu}_{55}$	$\frac{\mu_{55}}{4m_da^2}$	ϕ	ϕ
heta	heta	ψ	ψ	\overline{t}	$\frac{t}{\sqrt{\frac{2a}{g}}}$
$ar{u}$	$rac{u}{\sqrt{2ga}}$	$ar{v}$	$rac{v}{\sqrt{2ga}}$	$ar{w}$	$\frac{w}{\sqrt{2ga}}$
$ar{p}$	$\frac{p}{\sqrt{\frac{g}{2a}}}$	$ar{q}$	$\frac{q}{\sqrt{\frac{g}{2a}}}$	$ar{r}$	$\frac{r}{\sqrt{rac{g}{2a}}}$
$ar{u}$	$rac{\dot{u}}{g}$	$ar{v}$	$rac{\dot{v}}{g}$	$ar{w}$	$rac{\dot{w}}{g}$
$ar{p}$	$\frac{\dot{p}}{\frac{g}{2a}}$	$ar{\dot{q}}$	$\frac{\dot{q}}{\frac{g}{2a}}$	$ar{\dot{r}}$	$\frac{\dot{r}}{\frac{g}{2a}}$
\bar{X}_u	$m_d \sqrt{rac{g}{2a}}$	$ar{Y}_v$	$m_d \sqrt{rac{g}{2a}}$	$ar{Z}_w$	$m_d \sqrt{rac{g}{2a}}$
$ar{K}_p$	$2m_d a \sqrt{2ga}$	$ar{M}_q$	$2m_d a \sqrt{2ga}$	$ar{N}_r$	$2m_d a \sqrt{2ga}$
$ar{X}_{u u }$	$\frac{m_d}{2a}$	$ar{Y}_{v v }$	$\frac{m_d}{2a}$	$ar{Z}_{w w }$	$\frac{m_d}{2a}$
$ar{K}_{p p }$	$4m_d a$	$ar{M}_{q q }$	$4m_d a$	$ar{N}_{r r }$	$4m_d a$

through dividing them by combination of those three bases, as shown in Tab. 5.2.

Table 5.2: Dimensionless variables

Expressions of μ_{11} , μ_{22} , and μ_{55} for body in shape of prolate spheroid are expressed in Eqs. (4.42) and (4.43), also SB's displacement mass m_d has the expression

$$m_d = \frac{4}{3}\pi\rho ab^2\tag{5.13}$$

Dimensionless added mass is obtained as

$$\bar{\mu}_{11} = \frac{\mu_{11}}{m_d} = \frac{k_1}{2 - k_2} \tag{5.13a}$$

$$\bar{\mu}_{33} = \bar{\mu}_{22} = \frac{\mu_{22}}{m_d} = \frac{k_2}{2 - k_2}$$
(5.13b)

$$\bar{\mu}_{66} = \bar{\mu}_{55} = \frac{\mu_{55}}{4m_d a^2} = -\frac{1}{20} \frac{(b^2 - 1)^2 (k_2 - k_1)}{2(\bar{b}^2 - 1) + (\bar{b}^2 + 1)(k_2 - k_1)}$$
(5.13c)

in which, k_1 and k_2 were defined in Eq. (4.43).

Substitution of all dimensional variables in Tab. 5.2 into Eq. (5.10) leads to the dimensionless equations of motion, as shown in Eq. (5.14) below.

$$\bar{\boldsymbol{M}} \cdot \begin{bmatrix} \bar{\boldsymbol{u}} \\ \bar{\boldsymbol{v}} \\ \bar{\boldsymbol{v}} \\ \bar{\boldsymbol{v}} \\ \bar{\boldsymbol{p}} \\ \bar{\boldsymbol{q}} \\ \bar{\boldsymbol{r}} \end{bmatrix} = \begin{bmatrix} \bar{\boldsymbol{\Lambda}}_{11} & \bar{\boldsymbol{\Lambda}}_{12} \\ \bar{\boldsymbol{\Lambda}}_{21} & \bar{\boldsymbol{\Lambda}}_{22} \end{bmatrix} \cdot \begin{bmatrix} \bar{\boldsymbol{u}} \\ \bar{\boldsymbol{v}} \\ \bar{\boldsymbol{v}} \\ \bar{\boldsymbol{v}} \\ \bar{\boldsymbol{p}} \\ \bar{\boldsymbol{q}} \\ \bar{\boldsymbol{r}} \end{bmatrix} + \begin{bmatrix} -(\bar{m}-1)s(\theta) \\ (\bar{m}-1)c(\theta)s(\phi) \\ (\bar{m}-1)c(\phi)c(\theta) \\ \bar{m}\bar{y}_Gc(\phi)c(\theta) - \bar{m}\bar{z}_Gc(\theta)s(\phi) \\ -\bar{m}\bar{x}_Gc(\phi)c(\theta) - \bar{m}\bar{z}_Gs(\theta) \\ \bar{m}\bar{x}_Gc(\phi)s(\phi) + \bar{m}\bar{y}_Gs(\theta) \end{bmatrix}$$
(5.14)

where

$$\bar{\mathbf{M}} = \begin{bmatrix} \bar{m} + \bar{\mu}_{11} & 0 & 0 & 0 & \bar{m}\bar{z}_{G} & -\bar{m}\bar{y}_{G} \\ 0 & \bar{m} + \bar{\mu}_{22} & 0 & -\bar{m}\bar{z}_{G} & 0 & \bar{m}\bar{x}_{G} \\ 0 & 0 & \bar{m} + \bar{\mu}_{22} & \bar{m}\bar{y}_{G} & -\bar{m}\bar{x}_{G} & 0 \\ 0 & -\bar{m}\bar{z}_{G} & \bar{m}\bar{y}_{G} & \bar{I}_{x} & -\bar{I}_{xy} & -\bar{I}_{xz} \\ \bar{m}\bar{z}_{G} & 0 & -\bar{m}\bar{x}_{G} & -\bar{I}_{yx} & \bar{I}_{y} + \bar{\mu}_{55} & -\bar{I}_{yz} \\ -\bar{m}\bar{y}_{G} & \bar{m}\bar{x}_{G} & 0 & -\bar{I}_{zx} & -\bar{I}_{zy} & \bar{I}_{z} + \bar{\mu}_{55} \end{bmatrix}$$

$$\bar{\mathbf{A}}_{11} = \begin{bmatrix} -(\bar{X}_{u} + \bar{X}_{u|u|}|u|) & 0 & 0 & 0 \\ 0 & -(\bar{Y}_{v} + \bar{Y}_{v|v|}|v|) & 0 & 0 \\ 0 & 0 & -(\bar{Z}_{w} + \bar{Z}_{w|w|}|w|) \end{bmatrix}$$

$$\bar{\mathbf{A}}_{12} = \begin{bmatrix} -\bar{m}(\bar{y}_{G}\bar{q} + \bar{z}_{G}\bar{r}) & \bar{m}(\bar{x}_{G}\bar{q} - \bar{w}) - \bar{\mu}_{22}\bar{w} & \bar{m}(\bar{x}_{G}\bar{r} + \bar{v}) + \bar{\mu}_{22}\bar{v} \\ \bar{m}(\bar{y}_{G}\bar{p} + \bar{w}) + \bar{\mu}_{22}\bar{w} & -\bar{m}(\bar{z}_{G}\bar{r} + \bar{x}_{G}\bar{p}) & \bar{m}(\bar{y}_{G}\bar{r} - \bar{u}) - \bar{\mu}_{11}\bar{u} \\ \bar{m}(\bar{z}_{G}\bar{p} - \bar{v}) - \bar{\mu}_{22}\bar{v} & \bar{m}(\bar{z}_{G}\bar{q} + \bar{u}) + \bar{\mu}_{11}\bar{u} & -\bar{m}(\bar{x}_{G}\bar{p} + \bar{y}_{G}\bar{q}) \end{bmatrix}$$

$$(5.15c)$$
$$\bar{\mathbf{\Lambda}}_{21} = \begin{bmatrix} \bar{m}(\bar{y}_{G}\bar{q} + \bar{z}_{G}\bar{r}) & -\bar{m}(\bar{y}_{G}\bar{p} + \bar{w}) & -\bar{m}(\bar{z}_{G}\bar{p} - \bar{v}) \\ -\bar{m}(\bar{x}_{G}\bar{q} - \bar{w}) + \bar{\mu}_{22}\bar{w} & \bar{m}(\bar{z}_{G}\bar{r} + \bar{x}_{G}\bar{p}) & -\bar{m}(\bar{z}_{G}\bar{q} + \bar{u}) - \bar{\mu}_{11}\bar{u} \\ -\bar{m}(\bar{x}_{G}\bar{r} + \bar{v}) - \bar{\mu}_{22}\bar{v} & -\bar{m}(\bar{y}_{G}\bar{r} - \bar{u}) + \bar{\mu}_{11}\bar{u} & \bar{m}(\bar{x}_{G}\bar{p} + \bar{y}_{G}\bar{q}) \end{bmatrix}$$
(5.15d)
$$\bar{\mathbf{\Lambda}}_{22} = \begin{bmatrix} -(\bar{K}_{p} + \bar{K}_{p|p|}|\bar{p}|) & \bar{I}_{yz}\bar{q} + \bar{I}_{xz}\bar{p} - \bar{I}_{z}\bar{r} & -\bar{I}_{yz}\bar{r} - \bar{I}_{xy}\bar{p} + \bar{I}_{y}\bar{q} \\ -\bar{I}_{yz}\bar{q} - \bar{I}_{xz}\bar{p} + \bar{I}_{z}\bar{r} & -(\bar{M}_{q} + \bar{M}_{q|q|}|\bar{q}|) & \bar{I}_{xz}\bar{r} + \bar{I}_{xy}\bar{q} - \bar{I}_{x}\bar{p} + \bar{\mu}_{55}\bar{p} \\ \bar{I}_{yz}\bar{r} + \bar{I}_{xy}\bar{p} - \bar{I}_{y}\bar{q} & -\bar{I}_{xz}\bar{r} - \bar{I}_{xy}\bar{q} + \bar{I}_{x}\bar{p} - \bar{\mu}_{55}\bar{p} & -(\bar{N}_{r} + \bar{N}_{r|r|}|\bar{r}|) \end{bmatrix}$$
(5.15e)

It is noted that \overline{M} is a symmetric matrix.

5.3 Analysis of Equations of Motion and Numerical Computations

5.3.1 Second-Order, Time-Dependent, Nonlinear, Fully coupled System

As claimed in Chap. 2, twelve variables are needed to describe the instantaneous state of SB's motion. They are dimensionless position vector $\bar{\boldsymbol{\eta}}$ expressed in EFF as $[\bar{x}, \bar{y}, \bar{z}, \phi, \theta, \psi]^T$ and dimensionless velocity vector $\bar{\boldsymbol{\nu}}$ expressed in BFF as $[\bar{u}, \bar{v}, \bar{w}, \bar{p}, \bar{q}, \bar{r}]^T$.

Г

Recalling Eq. (2.1) and Eq. (5.14), we derive their dimensionless forms as

$$\bar{\dot{\boldsymbol{\eta}}} = \boldsymbol{J}(\boldsymbol{\alpha})\bar{\boldsymbol{\nu}} \tag{5.16}$$

٦

$$\bar{M}\bar{\nu} = \bar{\Lambda}\bar{\nu} + T(\bar{\eta}) \tag{5.17}$$

where

$$\bar{\mathbf{\Lambda}} = \begin{bmatrix} \bar{\mathbf{\Lambda}}_{11} & \bar{\mathbf{\Lambda}}_{12} \\ \bar{\mathbf{\Lambda}}_{21} & \bar{\mathbf{\Lambda}}_{22} \end{bmatrix} \qquad \mathbf{T}(\bar{\boldsymbol{\eta}}) = \begin{bmatrix} -(\bar{m}-1)s(\theta) \\ (\bar{m}-1)c(\theta)s(\phi) \\ (\bar{m}-1)c(\phi)c(\theta) \\ \bar{m}\bar{y}_Gc(\phi)c(\theta) - \bar{m}\bar{z}_Gc(\theta)s(\phi) \\ -\bar{m}\bar{x}_Gc(\phi)c(\theta) - \bar{m}\bar{z}_Gs(\theta) \\ \bar{m}\bar{x}_Gc(\phi)s(\phi) + \bar{m}\bar{y}_Gs(\theta) \end{bmatrix}$$
(5.18)

This system is nonlinear because some terms contain square of velocities and trigonometrical function of the Euler angles. It is noted that $\bar{\Lambda}$ is a function of α , which changes over time; hence the system is time-dependent. Besides, the fact that $\bar{\Lambda}_{12}$ and $\bar{\Lambda}_{21}$ does not equal to 0 indicates the coupling of translational motion and rotational motion. As a result, the system is so complicated that an explicit analytical solution of SB's motion can not obtained. Numerical integration as an alternative way has to be used.

For a general case, this system have the following independent inputs:

• Properties of SB

$$ar{m}, \ ar{b}, \ ar{\mu}, \ [ar{x}_G, ar{y}_G, ar{z}_G], \ \left[egin{array}{cccc} ar{I}_x & -ar{I}_{xy} & -ar{I}_{xz} \ -ar{I}_{yx} & ar{I}_y & -ar{I}_{yz} \ -ar{I}_{yz} & ar{I}_y & -ar{I}_{yz} \ -ar{I}_{zx} & -ar{I}_{zy} & ar{I}_z \end{array}
ight]$$

• Initial position and attitude

$$[\bar{x}_0, \bar{y}_0, \bar{z}_0, \phi_0, \theta_0, \psi_0]$$

• Initial velocity

$$[\bar{u}_0, \bar{v}_0, \bar{w}_0, \bar{p}_0, \bar{q}_0, \bar{r}_0]$$

If we adjust one of the variables above, the moving trajectory will be changed.

5.3.2 Numerical Integration

As the system is completely defined, given twelve state variables at time t, time derivative of the velocity vector can be calculated using equations of motion (Eq. (5.14)). Meanwhile, time derivative of the position vector can be obtained by applying transformation matrix on velocity vector (Eq. (2.1)). 4th-order Runge-Kutta method is used for integration over time and obtain twelve state variables in each time step.

$$\bar{\dot{\boldsymbol{\eta}}} = \boldsymbol{J}(\boldsymbol{\alpha})\boldsymbol{\bar{\nu}} \tag{5.19}$$

$$\bar{\boldsymbol{M}}\bar{\boldsymbol{\nu}} = \bar{\boldsymbol{\Lambda}}\bar{\boldsymbol{\nu}} + \boldsymbol{T}(\bar{\boldsymbol{\eta}}) \tag{5.20}$$

Define functions f_1 and f_2 such that

$$\bar{\nu}(\bar{t}) = \bar{\boldsymbol{M}}^{-1}(\bar{\boldsymbol{\Lambda}}\bar{\boldsymbol{\nu}} + \boldsymbol{T}(\bar{\boldsymbol{\eta}})) = f_1(t, \bar{\boldsymbol{\nu}}(\bar{t}), \bar{\boldsymbol{\eta}}(\bar{t}))$$
(5.21)

$$\bar{\boldsymbol{\eta}} = \boldsymbol{J}(\boldsymbol{\alpha})\bar{\boldsymbol{\nu}} = f_2(\bar{\boldsymbol{\nu}}(\bar{t}), \bar{\boldsymbol{\eta}}(\bar{t}))$$
(5.22)

which represents the dimensionless equations of motion and transformation matrix. $d\bar{t}$ is time step. Apply 4th order Runge-Kutta mothod:

$$\bar{\boldsymbol{\nu}}(\bar{t}+d\bar{t}) = \bar{\boldsymbol{\nu}}(\bar{t}) + \frac{d\bar{t}}{6}(k_1 + 2k_2 + 2k_3 + k_4) + O(dt^4)$$
(5.23)

$$\bar{\boldsymbol{\eta}}(\bar{t}+d\bar{t}) = \bar{\boldsymbol{\eta}}(\bar{t}) + \frac{d\bar{t}}{6}(k_5 + 2k_6 + 2k_7 + k_8) + O(dt^4)$$
(5.24)

where $O(dt^4)$ is the error, which is $4^t h$ order of dt and

$$\begin{aligned} k_1 &= f_1(\bar{\boldsymbol{\nu}}(\bar{t}), \bar{\boldsymbol{\eta}}(\bar{t})); & k_5 = f_2(\bar{\boldsymbol{\nu}}(\bar{t}), \bar{\boldsymbol{\eta}}(\bar{t})) \\ k_2 &= f_1(\bar{\boldsymbol{\nu}}(\bar{t}) + \frac{d\bar{t}}{2}k_1, \bar{\boldsymbol{\eta}}(\bar{t}) + \frac{d\bar{t}}{2}k_5); & k_6 = f_2(\bar{\boldsymbol{\nu}}(\bar{t}) + \frac{d\bar{t}}{2}k_1, \bar{\boldsymbol{\eta}}(\bar{t}) + \frac{d\bar{t}}{2}k_5) \\ k_3 &= f_1(\bar{\boldsymbol{\nu}}(\bar{t}) + \frac{d\bar{t}}{2}k_2, \bar{\boldsymbol{\eta}}(\bar{t}) + \frac{d\bar{t}}{2}k_6); & k_7 = f_2(\bar{\boldsymbol{\nu}}(\bar{t}) + \frac{d\bar{t}}{2}k_2, \bar{\boldsymbol{\eta}}(\bar{t}) + \frac{d\bar{t}}{2}k_6) \\ k_4 &= f_1(\bar{\boldsymbol{\nu}}(\bar{t}) + k_3 d\bar{t}, \bar{\boldsymbol{\eta}}(\bar{t}) + k_7 d\bar{t}); & k_8 = f_2(\bar{\boldsymbol{\nu}}(\bar{t}) + k_3 d\bar{t}, \bar{\boldsymbol{\eta}}(\bar{t}) + k_7 d\bar{t}) \end{aligned}$$

Time step is chosen to be small enough to have convergent results and all instantaneous state variables can be obtained. The numerical scheme is implemented in commercial software MatLab and the code could be found in Appendix E. A 3-dimension test case is shown in Appendix D.

Chapter 6

SIMPLIFIED EQUATIONS OF MOTION AND NUMERICAL CASES

6.1 3-DEGREE FREEDOM IN-PLANE MOTION

Intuition tells us if the mass distribution and initial conditions are all symmetric about the Oxz plane, SB should stay on this plane and the number of degrees of freedom will be reduced to three. We will demonstrate that in this section.

First, assuming symmetry of density distribution about $O'\hat{x}\hat{z}$ plane is kept, according to Eqs. (5.5) and (C.1)(a-d), we can derive

$$\bar{x}_G \neq 0, \ \bar{z}_G \neq 0, \ \bar{y}_G = 0$$

$$\bar{I}_{xz} = \bar{I}_{zx} \neq 0$$

$$\bar{I}_{xy} = \bar{I}_{yx} = \bar{I}_{yz} = \bar{I}_{zy} = 0$$
(6.1)

and moment of inertia tensor is simplified to be

$$\boldsymbol{I}_{O'} = \begin{bmatrix} \bar{I}_x & 0 & -\bar{I}_{xz} \\ 0 & \bar{I}_y & 0 \\ -\bar{I}_{zx} & 0 & \bar{I}_z \end{bmatrix}$$
(6.2)

Dimensionless acceleration at \bar{t} can be obtained by putting above zeros into the dimensionless equations of motion of Eqs. (5.16) and (5.17)

$$(\bar{m} + \bar{\mu}_{11})\bar{\dot{u}} + \bar{m}\bar{z}_{G}\bar{\dot{q}} = \bar{m}\bar{x}_{G}\bar{q}^{2} - (\bar{m} + \bar{\mu}_{22})\bar{w}\bar{q} - (\bar{m} - 1)\sin(\theta) (\bar{m} + \bar{\mu}_{22})\bar{\dot{v}} - \bar{m}\bar{z}_{G}\bar{p} + \bar{m}\bar{x}_{G}\bar{r} = 0 (\bar{m} + \bar{\mu}_{22})\bar{w} - \bar{m}\bar{x}_{G}\bar{\dot{q}} = \bar{m}\bar{z}_{G}\bar{q}^{2} + (\bar{m} + \bar{\mu}_{11})\bar{q}\bar{u} + (\bar{m} - 1)\cos\theta (\bar{m}\bar{z}_{G}\bar{v} + \bar{I}_{x}\bar{p} - \bar{I}_{xz}\bar{r} = 0$$

$$(\bar{n}\bar{z}_{G}\bar{v} + \bar{n}\bar{z}_{G}\bar{u} - \bar{m}\bar{x}_{G}\bar{w} = \bar{m}\bar{x}_{G}\bar{q}\bar{u} + (\bar{\mu}_{22} - \bar{\mu}_{11})\bar{w}\bar{u} - \bar{m}\bar{z}_{G}\bar{q}\bar{w} - \bar{m}(\bar{x}_{G}\cos\theta + \bar{z}_{G}\sin\theta)$$

$$(\bar{n}\bar{x}_{G}\bar{v} - \bar{I}_{zx}\bar{p} + (\bar{I}_{z} + \bar{\mu}_{55})\bar{r} = 0$$

From the above three boxed equations, we can derive that $\bar{\dot{v}} = \bar{\dot{p}} = \bar{\dot{r}} = 0$, i.e., no transverse translation and rotation about \hat{x} and \hat{y} axes.

In addition, assume that SB is released in the Oxz plane; transformation matrix J in Eq. (2.2) can be simplified and dimensionless time derivative of position is expressed as

$$\begin{bmatrix} \bar{x} \\ \bar{y} \\ \bar{z} \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \cdot \begin{bmatrix} \bar{u} \\ \bar{v} \\ \bar{w} \end{bmatrix}; \begin{bmatrix} \bar{\phi} \\ \bar{\theta} \\ \bar{\psi} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \tan\theta \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{\cos\theta} \end{bmatrix} \cdot \begin{bmatrix} \bar{p} \\ \bar{q} \\ \bar{r} \end{bmatrix}$$
(6.4)

Since

$$\bar{v} = \bar{p} = \bar{r} = 0$$

it could be proved that

 $\bar{\dot{y}}=\bar{\dot{\phi}}=\bar{\dot{\psi}}=0$

Thus we conclude

$$\phi = \psi = \bar{v} = \bar{p} = \bar{r} = 0$$
$$\implies \bar{\phi} = \bar{\psi} = \bar{v} = \bar{p} = \bar{r} = 0$$

Six degrees of freedom are reduced to three and the system is simplified to 6 ODEs as follows for surge \bar{u} , heave \bar{w} , pitch \bar{q} , displacements in the \bar{x} , \bar{y} directions and θ attitude.

$$(\bar{m} + \bar{\mu}_{11})\bar{u} + \bar{m}\bar{z}_G\bar{q} = \bar{m}\bar{x}_G\bar{q}^2 - (\bar{m} + \bar{\mu}_{22})\bar{w}\bar{q} - (\bar{m} - 1)\sin\theta$$

$$(\bar{m} + \bar{\mu}_{22})\bar{w} - \bar{m}\bar{x}_G\bar{q} = \bar{m}\bar{z}_G\bar{q}^2 + (\bar{m} + \bar{\mu}_{11})\bar{q}\bar{u} + (\bar{m} - 1)\cos\theta$$

$$(\bar{I}_y + \bar{\mu}_{55})\bar{q} + \bar{m}\bar{z}_G\bar{u} - \bar{m}\bar{x}_G\bar{w} = \bar{m}\bar{x}_G\bar{q}\bar{u} + (\bar{\mu}_{22} - \bar{\mu}_{11})\bar{w}\bar{u} - \bar{m}\bar{z}_G\bar{q}\bar{w} - \bar{m}(\bar{x}_G\cos\theta + \bar{z}_G\sin\theta)$$

$$\bar{\theta} = \bar{q}$$

$$\bar{x} = \bar{u}\cos\theta + \bar{w}\sin\theta$$

$$\bar{z} = -\bar{u}\sin\theta + \bar{w}\cos\theta$$

$$(6.5)$$

SB will move in Oxz plane as expected.

6.2 MOVING FORWARD WITH OSCILLATION

In the case that weight equals to buoyancy $m/m_d = 1$ and the center of mass is below the center of buoyancy $\bar{z}_G < 0$,

$$\bar{m} = 1, \qquad \bar{x}_G = 0, \qquad \bar{z}_G < 0$$

the system can be further simplified to:

$$\begin{cases} (1+\bar{\mu}_{11})\bar{\dot{u}}+\bar{z}_G\bar{\dot{q}} = -(1+\bar{\mu}_{22})\bar{w}\bar{q} \\ (1+\bar{\mu}_{22})\bar{\dot{w}} = \bar{z}_G\bar{q}^2 + (1+\bar{\mu}_{11})\bar{q}\bar{u} \\ (\bar{I}_y + \bar{\mu}_{55})\bar{\dot{q}} + \bar{z}_G\bar{\dot{u}} = (\bar{\mu}_{22} - \bar{\mu}_{11})\bar{w}\bar{u} - \bar{z}_G\bar{q}\bar{w} - \bar{z}_G\sin\theta \\ \bar{\dot{\theta}} = \bar{q} \\ \bar{\dot{x}} = \bar{u}\cos\theta + \bar{w}\sin\theta \\ \bar{\dot{z}} = -\bar{u}\sin\theta + \bar{w}\cos\theta \end{cases}$$

$$(6.6)$$

If the perturbations of the velocities are small, the high-order nonlinear terms can be neglected. In addition, assuming that θ is a small angle, so that $\sin \theta \approx \theta$ is valid, the system could be linearized as

$$(\bar{I}_y + \bar{\mu}_{55})\bar{\bar{\theta}} = -\bar{z}_G \theta \tag{6.7}$$

Solution of the system is a trigonometric function, which indicates that the prolate-spheroidal body oscillates while moving forward; the dimensionless period of the oscillation is

$$\bar{P} = 2\pi \sqrt{\frac{\bar{I}_y + \bar{\mu}_{55}}{\bar{z}_G}} \tag{6.8}$$

Simulation 1 The simulation setting as follows:

Properties	Values	
Major $Axis(m)$	0.24	
Minor $Axis(m)$	0.024	
Density of SB $[\rho_1, \rho_2, \rho_3, \rho_4]$ (kg/m^3)	[698.6, 698.6, 1298.6, 1298.6]	
Density of Water (kg/m^3)	998.6	
$[x_0, y_0, z_0, \phi_0, \theta_0, \psi_0](m \text{ or } I)$	$[0,0,0,0,-\tfrac{\pi}{24},0]$	
$[u_0, v_0, w_0, p_0, q_0, r_0](m/s \text{ or } s^{-1})$	$0.1\cos(-\frac{\pi}{24}), 0, 0.1\sin(-\frac{\pi}{24}), 0, 0, 0]$	

Table 6.1: Parameters of the model for Simulation 1

Density distribution follows the description in Appendix C with ρ_1, ρ_2, ρ_3 and ρ_4 given in Tab. 6.1. Other parameters are also defined in Tab. 6.1; initial conditions are depicted in Fig. 6.1

 $[u_0, v_0, w_0] = [0.1\cos(-\pi/24), 0, 0.1\sin(-\pi/24)]$

Figure 6.1: Prolate-spheroidal rigid body with center of mass below center of buoyancy with initial condition as indicated

According to Eqs. (C.7), (C.8), and (5.14),

$$I_y = 0.0505, \qquad \bar{\mu}_{55} = 0.0446, \qquad \bar{z}_G = 0.0056, \tag{6.9}$$

Substituting them in Eq. (6.8) gives the estimated period

$$P \approx 26.1635\tag{6.10}$$

The time-histories of the dimensionless position coordinates (\bar{x}, \bar{y}) and Euler angles are shown in Fig. 6.2. The time step is 10^{-5} second and the simulation time is 15 seconds. Dimensionless oscillation period is about 32 when nonlinear terms are considered. Compared with 26.1635, we can see that three degrees of freedom are heavily coupled and nonlinear terms are significant and can not be ignored even with very small initial velocity. Numerical experiment shows if the initial velocity is chosen to be 0, the dimensionless period will be very close to the estimated one given by Eq. (6.8).

Figure 6.2: Dimensionless position coordinates and Euler angles of Simulation 1

Here, time-history of \bar{x} shown in Fig. 6.2 is not linear and \bar{x} in Eq. (6.6) is not a constant, it seems to be linear just because the fluctuation of horizontal velocity is very small.

6.3 IN-PLANE MOTION FOR PROLATE SPHEROID WITH UNIFORM DEN-SITY DISTRIBUTION

If prolate-spheroidal rigid body is assumed to have uniform density distribution, according to Eq. (C.1), we can derive $x_G = z_G = 0$. The system can be simplified to:

$$\begin{cases} \bar{u} = \frac{1}{\bar{m} + \bar{\mu}_{11}} \left[-(\bar{m} + \bar{\mu}_{22}) \bar{w} \bar{q} - (\bar{m} - 1) \sin \theta \right] \\ \bar{w} = \frac{1}{\bar{m} + \bar{\mu}_{22}} \left[(\bar{m} + \bar{\mu}_{11}) \bar{q} \bar{u} + (\bar{m} - 1) \cos \theta \right] \\ \bar{q} = \frac{1}{\bar{I}_y + \bar{\mu}_{55}} \left[(\bar{\mu}_{22} - \bar{\mu}_{11}) \bar{w} \bar{u} \right] \\ \bar{\theta} = \bar{q} \\ \bar{x} = \bar{u} \cos \theta + \bar{w} \sin \theta \\ \bar{z} = -\bar{u} \sin \theta + \bar{w} \cos \theta \end{cases}$$
(6.11)

The expression of \bar{q} in Eq. (6.11) shows that gravitational force and buoyancy contribute to zero moment and angular acceleration is only a result of the coupling term of the translational velocity in the plane, which is known as unsteady Munk moment. Although the given conditions greatly simplified the equations of motion, the system is still a second-order, time-dependent, nonlinear, and coupled dynamic system, which needs to be solved numerically.

Simulation 2 The simulation setting for this testing case is as follows:

Geometry and physical parameters of the model are defined in Tab. 6.2. The prolatespheroidal rigid body has a uniform density that is set to be slightly greater than standard fresh water. It is released in zero initial velocity and -45° of θ , as shown in Fig. 6.3.

Properties	Values
Major Axis	0.24 m
Minor Axis	0.024 m
Density of SB	$1050 \ kg/m^{3}$
Density of Water	998.6 kg/m^3
$[x_0, y_0, z_0, \phi_0, \theta_0, \psi_0]$	$[0, 0, 0, 0, -\frac{\pi}{4}, 0]$
$[u_0, v_0, w_0, p_0, q_0, r_0]$	[0, 0, 0, 0, 0, 0]

Table 6.2: Parameters of the model for Simulation 2

Figure 6.3: Free release with -45°

Time step is chosen to be 10^{-5} second and simulation period is from 0 to 4.5 seconds.

Figure 6.4: Dimensionless position coordinates and Euler angles for Simulation 2

Figure 6.5: Dimensionless velocity in BFF for Simulation 2

Fig. 6.4 shows the historical responses of dimensionless position coordinates and Euler angles, from which we note that three degrees of freedom \bar{x}, \bar{z}, θ are not zeros and the other three stay at zero. It should be noted that time-history of \bar{z} is not a quadratic function as shown in Fig. 6.6. It looks close to a quadratic line, because the fluctuation of vertical velocity is relatively small . \bar{x} is observed to be oscillating around a positive number, which means instead of gliding down, the prolate spheroid actually is wiggling down like a leaf falling in the air.

Fig. 6.5 represents the historical responses of dimensionless velocity in BFF. Putting Eq. (6.11), Figs. 6.3, 6.4, and 6.5 together, it is noted that, at the beginning, \bar{u} and \bar{w} in BFF start to increase under gravitational force; then positive \bar{u} and \bar{w} lead to positive Munk moment and hence positive angular velocity \bar{q} , because added mass $\bar{\mu}_{22}$ is larger than $\bar{\mu}_{11}$. That positive \bar{q} comes back and results in negative \bar{u} and the body ends up with oscillating horizontally.

Figure 6.6: Time history of \bar{z} vs quadratic curve fit

6.4 Energy Conservation

In the case that viscous effects are not considered, there will be no damping terms dissipating energy hence total energy including kinetic energy and potential energy should be conserved. Eq. (6.12) expresses kinetic energy of the system by considering both the mass of rigid body and added mass. Eq. (6.13) gives the expression of gravitational potential energy of the system.

$$K = \frac{1}{2} \left[(m + \mu_{11})u^2 + (m + \mu_{22})v^2 + (m + \mu_{22})w^2 + I_x p^2 + (I_y + \mu_{55})q^2 + (I_z + \mu_{55})r^2 + 2I_{xy}pq + 2I_{yz}qr + 2I_{xz}pr \right]$$
(6.12)

$$P = -(m - m_d)gz \tag{6.13}$$

Figure 6.7: Dimensionless energy changes with time

Total energy is the sum of kinetic and potential energy. Nondimensionlizing it by $2m_dga$ lead to

$$\bar{T} = \frac{K+P}{2m_d g a} \tag{6.14}$$

$$= \frac{1}{2} \left[(\bar{m} + \bar{\mu}_{11}) \bar{u}^2 + (\bar{m} + \bar{\mu}_{22}) \bar{v}^2 + (\bar{m} + \bar{\mu}_{22}) \bar{w}^2 + \bar{I}_x \bar{p}^2 + (\bar{I}_y + \bar{\mu}_{55}) \bar{q}^2 + (\bar{I}_z + \bar{\mu}_{55}) \bar{r}^2 + 2 \bar{I}_{xy} \bar{p} \bar{q} + 2 \bar{I}_{yz} \bar{q} \bar{r} + 2 \bar{I}_{xz} \bar{p} \bar{r} \right] - (\bar{m} - \bar{m}_d) \bar{z}$$

$$(6.15)$$

Fig. 6.7 shows the dimensionless kinetic energy, gravitation potential energy, and total energy for **simulation 2**. We can see that, during falling, gravitational potential energy is transformed into kinematic energy resulting in conserved total energy.

6.5 Oscillation Period Changes with Release Angle

In previous sections, it was shown that prolate spheroid would oscillate horizontally instead of gliding down. This section would discuss the influence of release angle on the oscillation period.

Simulation 3

Prolate spheroid is released with zero initial velocity and all the model parameters are the same as **Simulation 2** except for the release angle θ_0 . Recall Eq. 6.11 as the control equations for this simulation. Fig. 6.8 shows the histories of \bar{x} . Period is defined to be the time between two adjacent peaks, for example, first period represents time between the first peak and second peak. In algorithm, times corresponding to two adjacent peaks of amplitude are found and subtraction gives us the period length.

Figure 6.8: Histories of \bar{x} for different release angles

Fig. 6.9 illustrates that periods change with release angle. It is noted that the first few periods for different release angles are almost the same, i.e. changing release angle has little influence on the period of horizontal oscillation. On the other hand, different periods are of different lengths, for example the first period of all cases is about 6.3 and the second period is about 4.05.

Figure 6.9: Dimensionless periods for change in horizontal position \bar{x} with release angle θ_0

Figure 6.10: Peaks of change in \bar{x} with the release angle θ_0

Figure 6.11: Histories of θ for different release angles

Figure 6.12: Dimensionless periods for θ change with release angle'

Fig. 6.8 also shows that different release angles have different peak oscillation amplitudes. Peak amplitude changing with release angle is illustrated in Fig. 6.10. It increases with the magnitude of θ and the largest peak amplitude happens between $\theta_0 = -1.3228$ and $\theta_0 = -1.4054$; after that it starts to decrease.

Not only the horizontal displacement of SB but also its angular displacement θ oscillates. Fig. 6.11 shows the histories of θ for different release angles and Fig. 6.12 shows its oscillation periods. Comparing Figs. 6.9 and 6.12, it is noted that lengths of periods for \bar{x} and θ are different.

6.6 OSCILLATION PERIOD CHANGES WITH INITIAL VELOCITY

Simulation 4

In this simulation, model has the same parameters as previous simulations (Simulation 2&3). Release angle θ_0 is fixed to be $-\pi/4$, and the dimensionless initial velocity \bar{u} along major axis is taken as a variable between 0 and 0.4. Fig. 6.13 shows the historical responses of \bar{x} for all cases. It is noted that in case the initial velocity is not zero, horizontal displacement keeps increasing with oscillating speed.

Figure 6.13: Histories of \bar{x} when the release angle $= -\frac{\pi}{4}$ and initial speed is changed

Fig. 6.14 shows the historical responses of angle θ for all cases and Fig. 6.15 shows how its oscillation period changes with the initial speed when the release angle is fixed. It is noted that, when the release angle is fixed, a small initial velocity has little influence on the period of θ 's oscillation. Combining Figs. 6.12 and 6.15 indicates that changing release angle or initial speed has little influence on the oscillation period of angular displacement θ .

Figure 6.14: Histories of θ when fix the release angle and change initial speed

Figure 6.15: Periods for θ vs initial Speed

Chapter 7

CONCLUSIONS

7.1 Summary and Conclusions

This report first defines two coordinate systems, EFF and BFF, and then the transformation between the two was developed. Gravitational force, buoyancy, and hydrodynamic force were discussed and their expressions were derived in BFF; among them hydrodynamic force is the most complicated and its derivation is based on added-mass theory [19]. Equations of motion were developed based on Newton's Second Law and Euler equations. The crux of this study is applying these two laws in BFF, which is not an inertia coordinate system. Connections between the acceleration and angular acceleration in BFF and in EFF were built to solve this problem. Because the system is allowed to have six degrees of freedom, Euler angles were introduced, thus making the coordinate transformation complex. As a result, the system is high-order, time-depandent, nonlinear, and fully coupled after nondimensionalization. No analytical solution can be found for such a system; A 4th-order Runge-Kutta integration method was adopted to obtain instantaneous twelve state variables Eqs. 5.23 and 5.24 including position, attitude, velocity, and angular velocity.

A free-falling prolate-spheroidal rigid body under gravitational force is simulated as a numerical application. Analysis of the dynamic equations shows the coupled term, known as Munk moment, is an important cause of oscillation. When weight equals to buoyancy and center of mass is below center of buoyancy, buoyancy and gravitational force act on different points resulting in an attitude-dependent moment. This moment together with Munk moment lead to an oscillating moving pattern. When weight is higher than buoyancy and the body is released from static, instead of gliding down, oscillation is observed during its falling. Changing the release angle has little influence on the *period* of horizontal oscillation; however, the oscillating amplitude greatly depends on the release angle. If initial velocity of the body is not zero, oscillation period of angular displacement will not change much, but the horizontal displacement will lose the oscillating property. Compared with pendulum's oscillation, the oscillation of falling prolate-spheroidal rigid body is much more complicated because of the nonlinear coupled hydrodynamic force.

7.2 FUTURE WORK

This report studied numerically the oscillation of a descending prolate spheroid under gravitational and the factors influencing the oscillation, such as release angle and initial velocity. However, the simulation did not consider viscous effects. Thus, it is interesting to conduct model tests and validate the simulation and investigate the effects of viscosity.

In addition, adding fins to the body to control its falling is of great interests. No power input or control force was included in the present study. Adding fins will introduce a new force that can be applied to control the descending history of the body.

References

- R.H. Davis (1995). Deep Diving and Submarine Operation Part 1 and 2, 9th edition. Gwent: Siebe Gorman and Co Ltd.
- [2] D.R. Blidberg (2000). "The Development of Autonomous Underwater Vehicles (AUV)". A Brief Summary. Autonomous Undersea Systems Institute.
- [3] "Submarine Technology Through the Years", Chief of Naval Operations, Submarine Warfare Division. Retrieved January 19, 2015. http://www.navy.mil/navydata/cno/n87/history/subhistory.html
- [4] Wikimedia Commons, "Ohio-class submarine launches Tomahawk Cruise missiles". Retrieved January 19, 2015. http://commons.wikimedia.org/wiki/File:Ohio-class_submarine_launches_Tomahawk_Cruise_ missiles_(artist_concept).jpg
- [5] "Russian Submarine classes". Retrieved January 20, 2015. http://i.imgur.com/SktkYGC.jpg
- [6] Global Fire Power Strength in Numbers. Retrieved January 20, 2015. www.globalfirepower.com
- [7] Office of Naval Research, Science & Technology Focus. Retrieved January 21, 2015. http://www.onr.navy.mil/focus/ocean/vessels/submersibles1.htm
- [8] Marine Technology News. "Chinese Submarine Dives intoIndian Ocean". Retrieved January 21, 2015. http://www.marinetechnologynews.com/news/chinese-submarine-dives-indian-506350
- [9] J.H.A.M. Vervoort (2009). "Modeling and Control of an Unmanned Underwater Vehicle". Master traineeship report, University of Canterbury, New Zealand.
- [10] T.Q. Donaldson (2001). Review of Autonomous Underwater Vehicle (AUV) Developments.
 U.S. Naval Meteorology and Oceanography Command; Naval Research Laboratory.
- [11] MIT Sea Grant. Retrieved January 21, 2015. http://seagrant.mit.edu/press_releases.php?nwsID=475
- [12] M. Gertler and G.R. Hagen (1967). "Standard Equations of motion for submarine simulation". Naval Ship Research and Development Center Report. No. NSRDC-2510
- [13] J. Feldman (1979). "Revised Standard Submarine Equation of Motion". David W.Taylor Naval Ship Research And Development Center. No. DTNSRDC/SPD-0393-09
- [14] T.I. Fossen (1994). Guidance and Control of Ocean Vehicles. John Wiley and Sons, New York.
- [15] M. Nahon (1996). "A Simplified Dynamics Model for Autonomous Underwater Vehicles". Autonomous Underwater Vehicle Technology AUV'96, Proceedings of the 1996 Symposium on. IEEE,1996.
- [16] M.F. Hajosy (1994). "Six Degree of Freedom Vehicle Controller Design for the Operation of an Unmanned Underwater Vehicle in a Shallow Water Environment". Master of Science thesis, Massachusetts Institute of Technology, USA.

- [17] T. Prestero (2001). "Verification of a Six-Degree of Freedom Simulation Model for the RE-MUS Autonomous Underwater Vehicle". Master of Science thesis, Massachusetts Institute of Technology, USA.
- [18] SNAME (1950). "Nomenclature for treating the motion of a submerged body through a fluid". Technical Report Bulletin 1-5. Society of Naval Architects and Marine Engineers, New York.
- [19] R.W. Yeung (2014). *Hydrodynamics of Ships and Ocean Systems*, Lecture Notes for course ME241A. University of California at Berkeley.
- [20] H. Lamb (1932). *Hydrodynamics*, Cambridge University Press, London.
- [21] F.H. Imlay (1961). The complete expressions for "added mass" of a rigid body moving in an ideal fluid. Hydro. Lab. R&D Report 1528, David Taylor Model Basin, Carderock, MD, USA.
- [22] W. Wang (2001). "Modeling and Simulation of the VideoRay Pro III Underwater Vehicle". OCEANS 2006-Asia Pacific. IEEE.

Appendix A

$oldsymbol{J}_2$

Time derivative of the Euler angles $\dot{\boldsymbol{\alpha}} = [\dot{\phi}, \dot{\theta}, \dot{\psi}]^T$ and angular velocities $\boldsymbol{\omega} = [p, q, r]^T$ are connected by a 3 by 3 transformation matrix \boldsymbol{J}_2 , as shown in Eq. (A.1)

$$\dot{\boldsymbol{\alpha}} = \boldsymbol{J}_2 \cdot \boldsymbol{\omega} \tag{A.1}$$

where \boldsymbol{J}_2 has the following expression

$$\boldsymbol{J}_{2} = \begin{bmatrix} 1 & \sin(\phi) \tan(\theta) & \cos(\phi) \tan(\theta) \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \frac{\sin(\phi)}{\cos\theta} & \frac{\cos(\phi)}{\cos(\theta)} \end{bmatrix}$$
(A.2)

To derive J_2 , we assume at time $t = t_1$, the orientation of BFF is described as $\alpha_1 = [\phi_1; \theta_1; \psi_1]$, and we name it *orientation*₁. Then after a tiny time step dt, it arrives at attitude $\alpha_2 = [\phi_2; \theta_2; \psi_2]$, which is *orientation*₂. Rotation from *orientation*₁ to *orientation*₂ is described as $\alpha_b = [\phi_b; \theta_b; \psi_b]$. All of these angles are Euler angles in rotational sequence $\psi \to \theta \to \phi$. Based on above definition, relationships between α_1 , α_2 , and α_b could be connected through Eq. (A.3)

$$\boldsymbol{T}_2 = \boldsymbol{T}_b \cdot \boldsymbol{T}_1 \tag{A.3}$$

where

$$\mathbf{T}_{1} = \begin{bmatrix} c(\theta_{1})c(\psi_{1}) & c(\theta_{1})s(\psi_{1}) & -s(\theta_{1}) \\ c(\psi_{1})s(\phi_{1})s(\theta_{1}) - c(\phi_{1})s(\psi_{1}) & c(\phi_{1})c(\psi_{1}) + s(\phi_{1})s(\theta_{1})s(\psi_{1}) & c(\theta_{1})s(\phi_{1}) \\ s(\phi_{1})s(\psi_{1}) + c(\phi_{1})c(\psi_{1})s(\theta_{1}) & c(\phi_{1})s(\psi_{1}) - c(\psi_{1})s(\phi_{1}) & c(\phi_{1})c(\theta_{1}) \end{bmatrix}$$
(A.4a)

$$\mathbf{T}_{2} = \begin{bmatrix} c(\theta_{2})c(\psi_{2}) & c(\theta_{2})s(\psi_{2}) & -s(\theta_{2}) \\ c(\psi_{2})s(\phi_{2})s(\theta_{2}) - c(\phi_{2})s(\psi_{2}) & c(\phi_{2})c(\psi_{2}) + s(\phi_{2})s(\theta_{2})s(\psi_{2}) & c(\theta_{2})s(\phi_{2}) \\ s(\phi_{2})s(\psi_{2}) + c(\phi_{2})c(\psi_{2})s(\theta_{2}) & c(\phi_{2})s(\psi_{2}) - c(\psi_{2})s(\phi_{2}) & c(\phi_{2})c(\theta_{2}) \\ s(\phi_{2})s(\psi_{2}) + c(\phi_{2})c(\psi_{2})s(\theta_{2}) & c(\phi_{2})s(\psi_{2}) - c(\psi_{2})s(\phi_{2}) & c(\phi_{2})c(\theta_{2}) \\ s(\phi_{2})s(\psi_{b}) + c(\phi_{b})c(\psi_{b})s(\phi_{b}) & c(\phi_{b})c(\psi_{b}) + s(\phi_{b})s(\phi_{b})s(\psi_{b}) & c(\theta_{b})s(\phi_{b}) \\ s(\phi_{b})s(\psi_{b}) - c(\phi_{b})s(\psi_{b}) & c(\phi_{b})s(\psi_{b}) - c(\psi_{b})s(\phi_{b}) & c(\phi_{b})c(\phi_{b}) \\ s(\phi_{b})s(\psi_{b}) + c(\phi_{b})c(\psi_{b})s(\theta_{b}) & c(\phi_{b})s(\psi_{b}) - c(\psi_{b})s(\phi_{b}) & c(\phi_{b})c(\theta_{b}) \end{bmatrix}$$
(A.4b)

After some basic matrix operations, T_b could be expressed in terms of T_1 and T_2 , shown in Eq. (A.5)

$$T_b = ((T_1^T)^{-1} \cdot T_2^T)^T$$
(A.5)

Let $dt \to 0$, above equation is still sound:

$$\lim_{dt \to 0} T_b = \lim_{dt \to 0} ((T_1^T)^{-1} \cdot T_2^T)^T$$
(A.6)

As time step dt approaches zero, ψ_b , θ_b , ϕ_b will converges to zero. In this case, changing the sequence of rotation, the arrived orientation of BFF will be the same, which means rotations around three axes with Euler angles could be believed to happen simultaneously. Thus, relationship between Euler angles describing rotation from *orientation*₁ to *orientation*₂ could be expressed in terms of angular velocities as:

$$\lim_{dt\to 0} \phi_b = p \cdot dt; \quad \lim_{dt\to 0} \theta_b = q \cdot dt; \quad \lim_{dt\to 0} \psi_b = r \cdot dt \tag{A.7}$$

Further, with ϕ_b , θ_b , ψ_b approaching zero, their trigonometric function limits could be expressed as

$$\lim_{dt\to 0} \sin(\phi_b) = \phi_b = p \cdot dt \tag{A.7a}$$

$$\lim_{dt\to 0} \sin(\theta_b) = \theta_b = q \cdot dt \tag{A.7b}$$

$$\lim_{dt \to 0} \sin(\psi_b) = \psi_b = r \cdot dt \tag{A.7c}$$

$$\lim_{dt\to 0} \cos(\phi_b) = \lim_{dt\to 0} \cos(\theta_b) = \lim_{dt\to 0} \cos(\psi_b) = 1$$
(A.7d)

Putting these sine and cosine values into Eq. (A.4c) and ignoring higher-order terms for small dt, $\lim_{dt\to 0} T_b$ could be rewritten as

$$\lim_{dt\to 0} \boldsymbol{T}_b = \begin{bmatrix} 1 & r \cdot dt & -q \cdot dt \\ -r \cdot dt & 1 & p \cdot dt \\ q \cdot dt & -p \cdot dt & 1 \end{bmatrix}$$
(A.8)

This is the detailed expression of left side of Eq. (A.4c), which is a skew-symmetric matrix and just about p, q, and r. Besides, the diagonal elements are all equal to 1, thus there are just three independent elements. The right-hand side of Eq. (A.6), denoted as R, has a very complicated expression.

$$R = \lim_{dt \to 0} ((T_1^T)^{-1} \cdot T_2^T)^T$$
(A.9)

which could be calculated analytically and expressed in terms of ϕ_1 , ϕ_2 , θ_1 , θ_2 , ψ_1 , and ψ_2 . Here we just provide expressions of R(2,3), R(2,3), and R(2,3).

$$R(2,3) = c(\phi_1)c(\theta_1)c(\theta_2)s(\phi_2) - c(\phi_2)c(\psi_1)c(\psi_2)s(\phi_1) - c(\phi_2)s(\phi_1)s(\psi_1)s(\psi_2) + c(\phi_1)c(\psi_1)c(\psi_2)s(\phi_2)s(\theta_1)s(\theta_2) + c(\phi_1)s(\phi_2)s(\theta_1)s(\theta_2)s(\psi_1)s(\psi_2) - c(\psi_1)s(\phi_1)s(\phi_2)s(\theta_2)s(\psi_2) + c(\psi_2)s(\phi_1)s(\phi_2)s(\theta_2)s(\psi_1) - c(\phi_1)c(\phi_2)c(\psi_1)s(\theta_1)s(\psi_2) + c(\phi_1)c(\phi_2)c(\psi_2)s(\theta_1)s(\psi_1)$$
(A.10a)
$$R(3,1) = c(\theta_1)c(\psi_1)s(\phi_2)s(\psi_2) - c(\phi_2)c(\theta_2)s(\theta_1) - c(\theta_1)c(\psi_2)s(\phi_2)s(\psi_1) + c(\phi_2)c(\theta_1)c(\psi_1)c(\psi_2)s(\theta_2) + c(\phi_2)c(\theta_1)s(\theta_2)s(\psi_1)s(\psi_2)$$
(A.10b)

$$R(1,2) = c(\phi_1)c(\theta_2)c(\psi_1)s(\psi_2) - c(\theta_1)s(\phi_1)s(\theta_2) - c(\phi_1)c(\theta_2)c(\psi_2)s(\psi_1) + c(\theta_2)c(\psi_1)c(\psi_2)s(\phi_1)s(\theta_1) + c(\theta_2)s(\phi_1)s(\theta_1)s(\psi_1)s(\psi_2)$$
(A.10c)

By using Sum and Difference identities of trigonometric functions, some combinations could be

made, R(2,3), R(2,3), and R(2,3) are simplified into

$$R(2,3) = c(\phi_1)c(\theta_1)c(\theta_2)s(\phi_2) - c(\phi_2)s(\phi_1)c(\psi_2 - \psi_1) + c(\phi_1)s(\phi_2)s(\theta_1)s(\theta_2)c(\psi_2 - \psi_1) - s(\phi_1)s(\phi_2)s(\theta_2)s(\psi_2 - \psi_1) - c(\phi_1)c(\phi_2)s(\theta_1)s(\psi_2 - \psi_1)$$
(A.11a)

$$R(3,1) = c(\theta_1)s(\phi_2)s(\psi_2 - \psi_1) - c(\phi_2)c(\theta_2)s(\theta_1)$$
(A.111)

$$+c(\phi_2)c(\theta_1)s(\theta_2)c(\psi_2 - \psi_1)$$
 (A.11b)

$$R(1,2) = c(\phi_1)c(\theta_2)s(\psi_2 - \psi_1) - c(\theta_1)s(\phi_1)s(\theta_2) + c(\theta_2)s(\phi_1)s(\theta_1)c(\psi_2 - \psi_1)$$
(A.11c)

Also, when dt approaches zero, $\psi_2 - \psi_1$, $\theta_2 - \theta_1$, and $\phi_2 - \phi_1$ all go to zero. Their sine and cosine function values are obtained

$$\lim_{dt\to 0} \sin(\phi_1) = \sin(\phi_2); \qquad \lim_{dt\to 0} \sin(\theta_1) = \sin(\theta_2)$$
(A.12a)

$$\lim_{dt \to 0} \cos(\psi_2 - \psi_1) = \lim_{dt \to 0} \cos(\theta_2 - \theta_1) = \lim_{dt \to 0} \cos(\phi_2 - \phi_1) = 1$$
(A.12b)

$$\lim_{dt \to 0} \sin(\phi_2 - \phi_1) = \phi_2 - \phi_1 \tag{A.12c}$$

$$\lim_{dt\to 0} \sin(\theta_2 - \theta_1) = \theta_2 - \theta_1 \tag{A.12d}$$

$$\lim_{dt \to 0} \sin(\psi_2 - \psi_1) = \psi_2 - \psi_1 \tag{A.12e}$$

With these limits, R(2,3), R(2,3), and R(2,3) could be further simplified into

$$R(2,3) = -\sin(\theta_1)(\psi_2 - \psi_1) + (\phi_2 - \phi_1)$$
(A.13a)

$$R(3,1) = \cos(\phi_1)(\theta_2 - \theta_1) + \cos(\theta_1)\sin(\phi_1)(\psi_2 - \psi_1)$$
(A.13b)

$$R(1,2) = -\sin(\phi_1)(\theta_2 - \theta_1) + \cos(\phi_1)\cos(\theta_1)(\psi_2 - \psi_1)$$
(A.13c)

The equality between left-hand side and right-hand side of Eq. (A.5) will lead to

$$\lim_{dt \to 0} p \cdot dt = R(2,3); \quad \lim_{dt \to 0} q \cdot dt = R(3,1); \quad \lim_{dt \to 0} r \cdot dt = R(1,2)$$
(A.14)

Then p, q, and r could be expressed in terms of $\phi_1, \phi_2, \theta_1, \theta_2, \psi_1$, and ψ_2 as

$$p = \lim_{dt \to 0} \frac{\phi_2 - \phi_1}{dt} - \sin(\theta_1) \lim_{dt \to 0} \frac{\psi_2 - \psi_1}{dt}$$
(A.15a)

$$q = \cos(\phi_1) \lim_{dt \to 0} \frac{\theta_2 - \theta_1}{dt} + \cos(\theta_1) \sin(\phi_1) \lim_{dt \to 0} \frac{\psi_2 - \psi_1}{dt}$$
(A.15b)

$$r = \cos(\phi_1)\cos(\theta_1)\lim_{dt\to 0} \frac{\psi_2 - \psi_1}{dt} - \sin(\phi_1)\lim_{dt\to 0} \frac{\theta_2 - \theta_1}{dt}$$
(A.15c)

According to the definition of time derivatives of $\phi,\,\theta,$ and ψ

$$\dot{\phi} = \lim_{dt \to 0} \frac{\phi_2 - \phi_1}{dt}; \ \dot{\theta} = \lim_{dt \to 0} \frac{\theta_2 - \theta_1}{dt}; \ \dot{\psi} = \lim_{dt \to 0} \frac{\psi_2 - \psi_1}{dt};$$
 (A.16)

Finally, relationship between ω and $\dot{\phi}$ is obtained in matrix form as

$$\begin{bmatrix} p \\ q \\ r \end{bmatrix} = \begin{bmatrix} 1 & 0 & \sin(\theta) \\ 0 & \cos(\phi) & \cos(\theta)\sin(\phi) \\ 0 & -\sin(\phi) & \cos(\phi)\cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{bmatrix}$$
(A.17)

Thus, \boldsymbol{J}_2 in Eq. (A.1) has the following expression

$$\boldsymbol{J}_{2} = \begin{bmatrix} 1 & 0 & \sin(\theta) \\ 0 & \cos(\phi) & \cos(\theta)\sin(\phi) \\ 0 & -\sin(\phi) & \cos(\phi)\cos(\theta) \end{bmatrix}^{-1} = \begin{bmatrix} 1 & \sin(\phi)\tan(\theta) & \cos(\phi)\tan(\theta) \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \frac{\sin(\phi)}{\cos\theta} & \frac{\cos(\phi)}{\cos(\theta)} \end{bmatrix}$$
(A.18)

Appendix B

TRANSLATIONAL MOTION AND ROTATIONAL MOTION

Eqs. (5.1), (5.2), and (5.3) are provided in Chap. 5 as SB's equations of motion. Its derivation could be found in [14] and is developed below again.

B.1 TRANSLATIONAL MOTION

For an arbitrary vector C in space, its time derivative with respect to EFF (\dot{C}) and BFF (\dot{C}) have the following relationship

$$\dot{\boldsymbol{C}} = \ddot{\boldsymbol{C}} + \boldsymbol{\omega} \times \boldsymbol{C} \tag{B.1}$$

where $\boldsymbol{\omega}$ is the angular velocity of the rotating coordinate system. It is noted that

$$\dot{\boldsymbol{\omega}} = \boldsymbol{\mathring{\omega}} + \boldsymbol{\omega} \times \boldsymbol{\omega} = \boldsymbol{\mathring{\omega}} \tag{B.2}$$

which means angular acceleration of the rotating coordinate system described in EFF is same as that in BFF. Position vector of center of mass in EFF (\mathbf{R}_G) can be expressed as the summation of position vector of the BFF's origin in EFF ($\mathbf{r}_{O'}$) and position vector of center of mass (\mathbf{r}_G) with respect to O'.

$$\boldsymbol{R}_{\boldsymbol{G}} = \boldsymbol{R}_{O'} + \boldsymbol{r}_{\boldsymbol{G}} \tag{B.3}$$

Time derivative with respect to EFF gives

$$\dot{\boldsymbol{R}}_G = \dot{\boldsymbol{R}}_{O'} + \dot{\boldsymbol{r}}_G \tag{B.4}$$

where

$$\dot{\boldsymbol{r}}_G = \dot{\boldsymbol{r}}_G + \boldsymbol{\omega} \times \boldsymbol{r}_G = \boldsymbol{\omega} \times \boldsymbol{r}_G \tag{B.5}$$

in which, $\mathbf{\dot{r}}_G$ equals to zero because SB is assumed to be a rigid body and BFF is fixed on SB. Substitution leads to

$$\dot{\boldsymbol{R}}_{G} = \dot{\boldsymbol{R}}_{O'} + \boldsymbol{\omega} \times \boldsymbol{r}_{G} \tag{B.6}$$

which can also be written as:

$$\boldsymbol{v}_G = \boldsymbol{v}_{O'} + \boldsymbol{\omega} \times \boldsymbol{r}_G \tag{B.7}$$

Time derivative of \boldsymbol{v}_G with respect to EFF is \boldsymbol{a}_G in Eq. (5.2)

$$\begin{aligned} \boldsymbol{a}_{G} &= \dot{\boldsymbol{v}}_{G} = \dot{\boldsymbol{v}}_{O'} + \dot{\boldsymbol{\omega}} \times \boldsymbol{r}_{G} + \boldsymbol{\omega} \times \dot{\boldsymbol{r}}_{G} \\ &= \dot{\boldsymbol{v}}_{O'} + \boldsymbol{\omega} \times \boldsymbol{v}_{O'} + \dot{\boldsymbol{\omega}} \times \boldsymbol{r}_{G} + \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{r}_{G}) \end{aligned} \tag{B.8}$$

where $v_{O'}$ is velocity of BFF's origin measured in EFF, and $\mathring{v}_{O'}$ is its time derivative with respect to BFF.

B.2 ROTATIONAL MOTION

According to the definition of angular momentum, SB's absolute angular momentum about O' is

$$\boldsymbol{L}_{O'} \equiv \int_{V} \boldsymbol{r} \times \boldsymbol{v} \rho \ dV \tag{B.9}$$

where r is position vector pointing at an arbitrary point on SB from O', v is that point's absolute velocity viewed in EFF.

Time derivative of $L_{O'}$ has two components

$$\dot{\boldsymbol{L}}_{O'} = \int_{V} \boldsymbol{r} \times \dot{\boldsymbol{v}}\rho \ dV + \int_{V} \dot{\boldsymbol{r}} \times \boldsymbol{v}\rho \ dV$$
(B.10)

in which, the first term is defined as moment around ${\cal O}'$

$$\boldsymbol{M}_{\boldsymbol{r}_{O'}} \equiv \int_{V} \boldsymbol{r} \times \boldsymbol{\dot{\boldsymbol{v}}} \rho \ dV \tag{B.11}$$

Considering

$$\dot{\boldsymbol{r}} = \dot{\boldsymbol{R}} - \dot{\boldsymbol{R}}_{O'} = \boldsymbol{v} - \boldsymbol{v}_{O'} \tag{B.12}$$

Substitution of Eqs. (B.12) and (B.11) into (B.10) gives

$$\dot{\boldsymbol{L}}_{O'} = \boldsymbol{M}_{r_{O'}} - \boldsymbol{v}_{O'} \times \int_{V} \boldsymbol{v}\rho \, dV$$

$$= \boldsymbol{M}_{r_{O'}} - \boldsymbol{v}_{O'} \times \int_{V} \dot{\boldsymbol{R}}\rho \, dV$$

$$= \boldsymbol{M}_{r_{O'}} - \boldsymbol{v}_{O'} \times m \dot{\boldsymbol{R}}_{G}$$

$$= \boldsymbol{M}_{r_{O'}} - \boldsymbol{v}_{O'} \times m (\dot{\boldsymbol{R}}_{O'} + \boldsymbol{\omega} \times \boldsymbol{r}_{G})$$

$$= \overline{\boldsymbol{M}_{r_{O'}} - m \boldsymbol{v}_{O'} \times (\boldsymbol{\omega} \times \boldsymbol{r}_{G})}$$
(B.13)

Eq. (B.9) could also be written as

$$\begin{aligned} \boldsymbol{L}_{O'} &= \int_{V} \boldsymbol{r} \times \boldsymbol{v}\rho \ dV \\ &= \int_{V} \boldsymbol{r} \times \boldsymbol{v}_{O'}\rho \ dV + \int_{V} \boldsymbol{r} \times (\boldsymbol{\omega} \times \boldsymbol{r})\rho \ dV \\ &= m\boldsymbol{r}_{G} \times \boldsymbol{v}_{O'} + \int_{V} \boldsymbol{r} \times (\boldsymbol{\omega} \times \boldsymbol{r})\rho \ dV \end{aligned} \tag{B.14}$$

Introducing the definition of inertia tensor

$$\boldsymbol{I}_{O'}\boldsymbol{\omega} = \int_{V} \boldsymbol{r} \times (\boldsymbol{\omega} \times \boldsymbol{r}) \rho \ dV \tag{B.15}$$

Expression of $L_{O'}$ is simplified as

$$\boldsymbol{L}_{O'} = \boldsymbol{I}_{O'}\boldsymbol{\omega} + m\boldsymbol{r}_G \times \boldsymbol{v}_{O'} \tag{B.16}$$

Time derivative of Eq. (B.16) results in

$$\dot{\boldsymbol{L}}_{O'} = \boldsymbol{I}_{O'} \boldsymbol{\mathring{\omega}} + \boldsymbol{\omega} \times (\boldsymbol{I}_{O'} \boldsymbol{\omega}) + m \boldsymbol{\dot{r}}_{G} \times \boldsymbol{v}_{O'} + m \boldsymbol{r}_{G} \times \boldsymbol{\dot{v}}_{O'} \\
= \boldsymbol{I}_{O'} \boldsymbol{\mathring{\omega}} + \boldsymbol{\omega} \times (\boldsymbol{I}_{O'} \boldsymbol{\omega}) + m (\boldsymbol{\omega} \times \boldsymbol{r}_{G}) \times \boldsymbol{v}_{O'} + m \boldsymbol{r}_{G} \times (\boldsymbol{\mathring{v}}_{O'} + \boldsymbol{\omega} \times \boldsymbol{v}_{O'}) \\
= \left[\boldsymbol{I}_{O'} \boldsymbol{\mathring{\omega}} + \boldsymbol{\omega} \times (\boldsymbol{I}_{O'} \boldsymbol{\omega}) + m \boldsymbol{r}_{G} \times (\boldsymbol{\mathring{v}}_{O'} + \boldsymbol{\omega} \times \boldsymbol{v}_{O'}) - m \boldsymbol{v}_{O'} \times (\boldsymbol{\omega} \times \boldsymbol{r}_{G}) \right]$$
(B.17)

Comparing Eqs. (B.13) and (B.16), we could obtain Eq. (5.3)

$$\boldsymbol{M}_{\boldsymbol{r}_{O'}} = \boldsymbol{I}_{O'} \boldsymbol{\mathring{\omega}} + \boldsymbol{\omega} \times (\boldsymbol{I}_{O'} \boldsymbol{\omega}) + m \boldsymbol{r}_{G} \times (\boldsymbol{\mathring{v}}_{O'} + \boldsymbol{\omega} \times \boldsymbol{v}_{O'})$$
(B.18)

Appendix C

A CASE OF NON-UNIFORM MASS DISTRIBUTION

Fig. C.1 below shows a distribution of density for prolate spheroid, in which, there are four densities ρ_1 , ρ_2 , ρ_3 , and ρ_4 , its overall distribution is symmetric about plane $O'\hat{x}\hat{z}$.

Figure C.1: Distribution of density

Mass and center of mass for this case could be developed as

$$m = \int_{-a}^{a} \int_{0}^{b\sqrt{1-\frac{\hat{x}^{2}}{a^{2}}}} \int_{0}^{2\pi} \rho(\theta, r, \hat{x}) r d\theta dr d\hat{x}$$

= $\frac{\pi}{3} a b^{2} (\rho_{1} + \rho_{2} + \rho_{3} + \rho_{4})$ (C.1a)

$$x_{G} = \frac{\int_{-a}^{a} \int_{0}^{b\sqrt{1-\frac{\hat{x}^{2}}{a^{2}}}} \int_{0}^{2\pi} \rho(\theta, r, \hat{x}) \hat{x} r d\theta dr d\hat{x}}{m} - \frac{3a(\rho_{2} + \rho_{4} - \rho_{1} - \rho_{3})}{m}$$
(C.1b)

$$=\frac{3k(\rho_2 + \rho_4 - \rho_1 - \rho_3)}{8(\rho_1 + \rho_2 + \rho_3 + \rho_4)}$$
(C.1b)

$$y_G = \frac{\int_{-a}^{a} \int_{0}^{b\sqrt{1-\frac{x}{a^2}}} \int_{0}^{2\pi} \rho(\theta, r, \hat{x}) r^2 \cos\theta d\theta dr d\hat{x}}{m} = 0$$
(C.1c)

$$z_G = -\frac{\int_{-a}^{a} \int_{0}^{b\sqrt{1-\frac{\hat{x}^2}{a^2}}} \int_{0}^{2\pi} \rho(\theta, r, \hat{x}) r^2 \sin \theta d\theta dr d\hat{x}}{m}$$
$$= \frac{3b(\rho_3 + \rho_4 - \rho_1 - \rho_2)}{8(\rho_1 + \rho_2 + \rho_3 + \rho_4)}$$
(C.1d)

Its vector form can be shown as

$$\boldsymbol{r}_{G} = \begin{bmatrix} \frac{3a(\rho_{2}+\rho_{4}-\rho_{1}-\rho_{3})}{8(\rho_{1}+\rho_{2}+\rho_{3}+\rho_{4})} \\ 0 \\ \frac{3b(\rho_{3}+\rho_{4}-\rho_{1}-\rho_{2})}{8(\rho_{1}+\rho_{2}+\rho_{3}+\rho_{4})} \end{bmatrix}$$
(C.2)

Based on the definition of inertia tensor in Eqs. (5.4) and (5.5), the integration results are shown below

$$\mathbf{I}_{O'} = \begin{bmatrix} I_x & -I_{xy} & -I_{xz} \\ -I_{yx} & I_y & -I_{yz} \\ -I_{zx} & -I_{xy} & I_z \end{bmatrix}$$
(C.3)

where

$$I_x = \int_{-a}^{a} \int_{0}^{b\sqrt{1-\frac{\hat{x}^2}{a^2}}} \int_{0}^{2\pi} \rho(\theta, r, \hat{x}) r^3 d\theta dr d\hat{x}$$

= $\frac{2\pi}{15} a b^4 \left[\rho_1 + \rho_2 + \rho_3 + \rho_4 \right]$ (C.4a)

$$I_{y} = \int_{-a}^{a} \int_{0}^{b\sqrt{1-\frac{\hat{x}^{2}}{a^{2}}}} \int_{0}^{2\pi} \rho(\theta, r, \hat{x})(\hat{x}^{2} + r^{2}\sin^{2}(\theta))rd\theta drd\hat{x}$$

$$= \frac{\pi}{15}ab^{2}(b^{2} + a^{2})\left[\rho_{1} + \rho_{2} + \rho_{3} + \rho_{4}\right]$$
(C.4b)

$$I_{z} = \int_{-a}^{a} \int_{0}^{b\sqrt{1-\frac{\hat{x}^{2}}{a^{2}}}} \int_{0}^{2\pi} \rho(\theta, r, \hat{x})(\hat{x}^{2} + r^{2}\cos^{2}(\theta))rd\theta drd\hat{x}$$

= $\frac{\pi}{15}ab^{2}(b^{2} + a^{2})\left[\rho_{1} + \rho_{2} + \rho_{3} + \rho_{4}\right]$ (C.4c)

$$I_{xy} = I_{yx} = \int_{-a}^{a} \int_{0}^{b\sqrt{1-\frac{\hat{x}^{2}}{a^{2}}}} \int_{0}^{2\pi} \rho(\theta, r, \hat{x}) \hat{x}r^{2} \cos(\theta) \ d\theta dr d\hat{x} = 0$$
(C.4d)

$$I_{xz} = I_{zx} = -\int_{-a}^{a} \int_{0}^{b\sqrt{1-\frac{x^{2}}{a^{2}}}} \int_{0}^{2\pi} \rho(\theta, r, \hat{x}) \hat{x}r^{2} \sin(\theta) \ d\theta dr d\hat{x}$$
$$= \frac{2}{15} a^{2} b^{3} \left[\rho_{1} - \rho_{2} + \rho_{4} - \rho_{3}\right]$$
(C.4e)

$$I_{yz} = I_{zy} = \int_{-a}^{a} \int_{0}^{b\sqrt{1-\frac{\hat{x}^{2}}{a^{2}}}} \int_{0}^{2\pi} \rho(\theta, r, \hat{x}) r^{3} s(\theta) c(\theta) \ d\theta dr d\hat{x} = 0$$
(C.4f)

in which, as shown in Fig. 4.1, a is the length of semi-major axis and b is the length of semi-minor axis.

In the case that prolate spheroid with uniform distribution of density

$$\rho_1=\rho_2=\rho_3=\rho_4=\rho$$

 $I_{xy} = I_{yx} = I_{xz} = I_{zx} = I_{zy} = 0$ due to prolate spheroid's symmetry, thus $I_{o'}$ is simplified

into a diagonal matrix

$$\boldsymbol{I}_{O'} = \begin{bmatrix} \frac{8}{15}\rho\pi ab^4 & 0 & 0\\ 0 & \frac{4}{15}\rho\pi ab^2(a^2+b^2) & 0\\ 0 & 0 & \frac{4}{15}\rho\pi ab^2(a^2+b^2) \end{bmatrix}$$
(C.5)

Non-dimensionalizing expressions of mass, center of mass, and inertia tensor by using major axis 2a, displacement mass m_d as dimension bases results in

$$\bar{m} = \frac{\rho_1 + \rho_2 + \rho_3 + \rho_4}{4\rho_w} \tag{C.6}$$

$$\bar{\boldsymbol{r}}_{G} = \begin{bmatrix} \bar{x}_{G} \\ \bar{y}_{G} \\ \bar{z}_{G} \end{bmatrix} = \begin{bmatrix} \frac{3(\rho_{2}+\rho_{4}-\rho_{1}-\rho_{3})}{16(\rho_{1}+\rho_{2}+\rho_{3}+\rho_{4})} \\ 0 \\ \frac{3(\rho_{3}+\rho_{4}-\rho_{1}-\rho_{2})}{16(\rho_{1}+\rho_{2}+\rho_{3}+\rho_{4})}\bar{\boldsymbol{b}} \end{bmatrix}$$
(C.7)

$$\bar{I}_x = \frac{1}{40}\bar{b}^2 \frac{\rho_1 + \rho_2 + \rho_3 + \rho_4}{\rho_w}$$
(C.8a)

$$\bar{I}_y = \bar{I}_z = \frac{1}{80} (\bar{b}^2 + 1) \frac{\rho_1 + \rho_2 + \rho_3 + \rho_4}{\rho_w}$$
(C.8b)

$$\bar{I}_{xz} = \bar{I}_{zx} = \frac{1}{40\pi} \bar{b}^2 \frac{\rho_1 - \rho_2 + \rho_4 - \rho_3}{\rho_w}$$
(C.8c)

$$\bar{I}_{yz} = \bar{I}_{zy} = \bar{I}_{xy} = \bar{I}_{yx} = 0$$
(C.8d)

where, ρ_w is the density of water.

For prolate spheroid with uniform density distribution ρ

$$\bar{m} = \frac{\rho}{\rho_w} \tag{C.9}$$

$$\bar{\boldsymbol{r}}_G = \boldsymbol{0} \tag{C.10}$$

$$\bar{\boldsymbol{I}}_{o'} = \begin{bmatrix} \frac{\bar{b}^2}{10} & 0 & 0\\ 0 & \frac{\bar{b}^2 + 1}{20} & 0\\ 0 & 0 & \frac{\bar{b}^2 + 1}{20} \end{bmatrix}$$
(C.11)

Appendix D

3-D CHECK

This numerical experiment briefly tests if the code works for 3 dimensions. There are four sub-cases defined in Tabs. D.1 and D.2. The prolate spheroid is released with zero initial velocities, and the differences between them are releasing angle.

Case	1	2	3	4
ϕ	0	0	0	0
θ	$-\frac{\pi}{4}$	$-\frac{\pi}{4}$	$-\frac{\pi}{4}$	$\frac{\pi}{4}$
ψ	0	$\frac{\pi}{2}$	$\frac{\pi}{4}$	0

Variables	Values	
Major Axis	$0.12 \mathrm{~m}$	
Minor Axis	$0.012\mathrm{m}$	
Density of Prolate Spheroid	$1050 \ kg/m^3$	
Density of Water	998.6 kg/m^3	

Table D.1: Release attitudes of Four Cases

Table D.2: Parameters of the model

Figure D.1: Case 1

Figure D.2: Case 2

Figure D.3: Case 3

Figure D.4: Case 4

Intuition tells us four cases should have the same the histories of z coordinate, because the angle between their major axes and OZ axis is same. It is shown in Fig. D.5.

Figure D.5: Dimensionless position in EFF and attitude

Case.1 and Case.4 have x coordinate histories of same magnitude but opposite signs. It also shows all four cases have same oscillation period as expected. Fig. D.6 illustrates the histories of dimensionless velocities in body-fixed coordinate system. It can be seen degrees of freedom are

reduced to three because zero initial velocities. Case.4 has opposite sign in \bar{u} and \bar{q} compared with Case.1,2,3, as expected.

Figure D.6: Dimensionless velocity in BFF

Appendix E

MATLAB CODE

MatLab code for Simulation 2

E.1 MODEL DEFINE

```
1 %% Define variables
_{2} aa = 0.24;
                                       % Major axis in (m)
3 bb = 0.024;
                                       % Minor axis in (m)
4 X0 = [0;0;0;0;-pi/4;0];
                                       % Initial Position vector in EFF (m,rad)
5 \quad UO = [0;0;0;0;0;0];
6 % Initial Translation velocity and angular velocity (m/s , rad/s)
7 ro = [1050,1050,1050,1050]; % Desity distribution kg/m<sup>3</sup>
8 t =3+0.002;
                                      % computation time from 0 - time(s)
9 tstep = 1e-5;
                                      % Time step
10 %% Computation
11 [T,Td,X,Xd,Vb,Vbd,Ve,Ved,omega,omegad,energy,K,P]=prolate_s(aa,bb,X0,U0,ro,t,tstep);
12 % output arguement
           Dimensionless time series
                                                          (1 by n)
13 % T
14 % Td
             Dimensional time series
                                                          (1 by n)
15 % X
             Dimensionless position vector in EFF
                                                          (6 by n)
             Dimensional position vector in EFF
16 % Xd
                                                          (6 by n)
             Dimensionless velocity vector in BFF
17 % Vb
                                                          (3 by n)
             Dimensional Vecocity vector in BFF
                                                          (3 by n)
18 % Vbd
19 % Ve
             Dimensionless translational velocity in EFF (3 by n)
20 % Ved
             Dimensional translational velocity in EFF (3 by n)
             Dimensionless angular velocity in BFF
                                                          (3 by n)
21 % omega
22 % omegad Dimensional angular velocity in BFF
                                                          (3 by n)
23 % K
             Kinetic energy
                                                          (1 by n)
24 % P
              Gravitational potential energy
                                                                (1 by n)
25 name = 2;
26 name = ['simulation',num2str(name)];
27 save(num2str(name))
                        %save data
28 %% Postprocessing
29 % plot state variables
30 plotfigure([T,Td],[X;Xd;Vb;omega;Vbd;omegad;Ve;Ved],name)
31 % animation
32 close
33 plotmoving ( Td, Xd,aa/2,bb/2,tstep,[name,'.mp4']) ;
34 % plot energy
35 fq1 = figure();
36 set(fg1,'Position',[50 30 1270 630]);
37 plot(T, energy, T, K, T, P)
38 legend('Total Energy','Kinetic Energy','Gravitational Potential Energy')
39 xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
40 ylabel('Energy','Interpreter','latex','FontSize',20);
41 title('Dimensionless energy vs time', 'FontSize', 20)
42 ylim([-0.5,0.5])
```

E.2 PROCESSING

4th Order Runge-Kutta integration

```
1 function [T,Td,X,Xd,Vb,Vbd,Ve,Ved,omega,omegad,E,K,P]=prolate_s(aa,bb,X,U,ro,t,tstep
2 % Input arguments
3 % aa
             Major axis in (m)
4 % bb
             Minor axis in (m)
5 % X
             Position vector in EFF (m,rad)
             Initial Translation velocity and angular velocity
6 % U
7 % ro
             Desity distribution kg/m^3
             Computation time from 0 - time(s)
8 % t
9 % tstep
             Time step
             density of steel - density of ABS
10 % rs
             radius of steel ball
11 % rr
12 % Output arguments
            Dimensionless time series
13 % T
14 % Td
             Dimensional time series
15 % X
            Dimensionless position vector in EFF
16 % Xd
             Dimensional position vector in EFF and velocity vector in BFF
17 % Vb
             Dimensionless translational velocity vector in BFF
18 % Vbd
             Dimensional translational vecocity vector in BFF
19 % Ve
             Dimensionless translational velocity in EFF
             Dimensional translational velocity in EFF
20 % Ved
             Dimensionless angular velocity in BFF
21 % omega
22 % omegad
             Dimensional angular velocity in BFF
             Total energy
23 % E
24 % K
             Kinetic energy
25 % P
             Gravitation potential energy
26 \, g = 9.81;
                                      % gravitational acceleration
27 row = 998.6;
                                      % water density kg/m^3
28 %% non-dimensionalization
29 t = t / sqrt(aa/q);
                                      % dimensionless time period
30 dt = tstep/sqrt(aa/g);
                                     % dimensionless time step
31 X(1:3) = X(1:3)/aa;
                                     % dimensionless position vector expressed in EFF
32 U(1:3) = U(1:3)/sqrt(q*aa);
                                     % dimensionless translational velocity in BFF
                                     % dimensionless angular velocity in BFF
33 U(4:6) = U(4:6)/sqrt(g/aa);
34 ro = ro/row;
                                     % dimensionless density
                                      % dimensionless density of additional ball
35 %rs = rs/row;
                                      % dimensionless minor axis
36 b = bb/aa;
37 [m,rg,I] = Property(ro,b);
38 % m: dimensionless mass
39 % rg: dimensionless center of mass
40 % I:
         dimensionless inertia tensor
41 %% Addedmass
                                % dimensionless added mass [mu11;mu22;mu55]
42 mu = addedmass ( b );
43 M = massm ( m, mu, rg, I ); % dimensionless mass matrix
44 %det(M)
45 %% 4th order Runge-kutta
46 T = 0 : dt : t ;
                                  % time series
47 T = T';
                                  % Make it a column vecotor
48 all = zeros( 12 , length(T) ); % initialization all state variables
49 all (:,1) = [ X ; U ] ;
50 Ve = zeros (3, length(T));
51 J1 = transform(X(4:6));
52 Ve(1:3,1) = J1*U(1:3);
53 for i = 1 : length(T)-1
```

```
54 [ac1,vo1] = accelerate ( U, X, m, rg, mu, M ,I) ;
 55 K1 = dt * ac1 ;
 56 L1 = dt * vol ;
 57 [ac2,vo2] = accelerate ( U+0.5*K1, X+0.5*L1, m, rg, mu, M , I ) ;
 58 K2 = dt * ac2 ;
 59 L2 = dt * vo2 ;
 60 [ac3,vo3] = accelerate ( U+0.5*K2, X+0.5*L2, m, rg, mu, M , I) ;
 61 \text{ K3} = \text{dt} * \text{ac3} ;
 62 L3 = dt * vo3 ;
 63 [ac4,vo4] = accelerate ( U+K3, X+L3, m, rg, mu, M , I) ;
 64 K4 = dt * ac4 ;
 65 L4 = dt * vo4 ;
 66 U = U + 1/6 * (K1 + 2 * K2 + 2 * K3 + K4);
 67 X = X + 1/6 * (L1 + 2 * L2 + 2 * L3 + L4);
 68 all ( : , i+1 ) = [ X; U ];
 69 J1 = transform(X(4:6));
 70 Ve(1:3,i+1) = J1*U(1:3); % Dimensionless translation velocity in EFF
 71 end
 72 %% dimensionalize
 73 Td = T*sqrt(aa/g); % dimensional time series
 74 X = all(1:6,:); % dimensionless position vector in EFF
 75 Vb = all(7:9,:); % dimensionless translational velocity in BFF
 76 omega = all(10:12,:); % dimensionless angular velocity in BFF
 77 Xd([1,2,3],:) = X([1,2,3],:)*aa;
 78 Xd([4,5,6],:) = X([4,5,6],:); % dimensional position vector in EFF
 79 Vbd = Vb*sqrt(g*aa); % dimensional translational velocity in BFF
 80 omegad = omega*sqrt(g/aa); % dimensional angular velocity in BFF
 81 Ved = Ve*sqrt(g*aa); % dimensional velocity in EFF
 82 K =0.5*(m+mu(1))*Vb(1,:).^2+0.5*(m+mu(2))*Vb(2,:).^2 ...
                   +0.5*(m+mu(2))*Vb(3,:).^2+0.5*I(1,1)*omega(1,:).^2 ...
 83
                   +0.5*(I(2,2)+mu(3))*omega(2,:).<sup>2</sup>+0.5*(I(3,3)+mu(3))*omega(3,:).<sup>2</sup> ...
 84
                   -I(1,2)*omega(1,:).*omega(2,:)-I(2,3)*omega(2,:).*omega(3,:)...
 85
                   -I(3,1)*omega(3,:).*omega(1,:);
 86
 87 P = -(m-1) * X(3,:);
 88 E = K + P;
 89 end
 90 function [m,rg,I] = Property(ro,b)
 91 % input arguements
 92 % ro: density vector / density of water
 93 % b: minor axis / mijor axis
 94 % output arguments
 95 % rg dimensionless center of mass in BFF
 96 \text{ rg} = \left[ \frac{3}{16} \left( \frac{10}{10} + \frac
 97
                                                                            0
 98
                     3/16*(ro(3)+ro(4)-ro(1)-ro(2))/(ro(1)+ro(2)+ro(3)+ro(4))*b];
 99 % dimensionless inertia tensor
100 I11 = 1/40 \cdot b^2 \cdot (sum(ro));
101 I22 = 1/80 * (b^2+1) * (sum(ro));
102 \quad I33 = I22;
103 I13 = 1/40/pi*b^2*(ro(1)+ro(4)-ro(2)-ro(3));
104 I31 = I13;
105 I = [I11],
                                                    , -I13
                                            0
                                          I22
                                                       ,
106
                   0
                                                                 0
107
                   -I31 ,
                                               0
                                                                I33];
                                                          ,
108 % dimensionless mass
109 \, \text{m} = \text{sum}(\text{ro})/4;
110 end
111 % Added mass
112 function mu= addedmass(b)
```
```
113 if b == 1
114
        mu11 = 0.5;
        mu22 = 0.5;
115
        mu55 = 0;
116
117 else
   % Eccentricity
118
119 e = sqrt(1-b^2);
120 % dimensionless factor l
121 k1 = 2*(1-e^2)/e^3*((0.5*\log((1+e)/(1-e))-e));
122 % dimensionless factor n
123 k2 = 1/e^2 - (1-e^2)/2/e^3 + \log((1+e)/(1-e));
124 % added mass for prolate spheroid
125 \text{ mull} = \frac{k1}{(2-k2)};
126 \text{ mu22} = \frac{k2}{(2-k2)};
127 mu55 = -1/20*e^4*(k2-k1)/(-2*e^2+(b^2+1)*(k2-k1));
128 end
129 mu = [mu11;mu22;mu55];
130 end
   % Mass matrix
131
132
   function M = massm(m,mu,rg,I)
   % Mass matrix
133
134 M1 = [m+mu(1), 0, 0, 0, m*rg(3), -m*rg(2)];
135 M2 = [0,m+mu(2),0,-m*rg(3),0,m*rg(1)];
136 \text{ M3} = [0,0,m+mu(2),m*rg(2),-m*rg(1),0];
137 M4 = [0, -m * rg(3), m * rg(2), I(1,1), I(1,2), I(1,3)];
138 M5 = [m*rg(3), 0, -m*rg(1), I(2, 1), I(2, 2)+mu(3), I(2, 3)];
139 M6 = [-m*rg(2), m*rg(1), 0, I(3, 1), I(3, 2), I(3, 3)+mu(3)];
140 M = [M1;M2;M3;M4;M5;M6];
141 end
142 % Transformation matrix
143 function J1=transform(alpha)
   J1 = [\cos(alpha(2)) * \cos(alpha(3)), \sin(alpha(1)) * \sin(alpha(2)) * \cos(alpha(3)) - \dots
144
145
         \cos(alpha(1))*\sin(alpha(3)),\sin(alpha(1))*\sin(alpha(3))+\cos(alpha(1))*...
         sin(alpha(2)) * cos(alpha(3))
146
         \cos(alpha(2))*\sin(alpha(3)), \cos(alpha(1))*\cos(alpha(3))+\sin(alpha(1))*...
147
         sin(alpha(2))*sin(alpha(3)), cos(alpha(1))*sin(alpha(2))*sin(alpha(3))-...
148
         sin(alpha(1)*cos(alpha(3)))
149
         -sin(alpha(2)),sin(alpha(1))*cos(alpha(2)),cos(alpha(1))*cos(alpha(2))];
150
151 end
```

Integrated function

```
1 function [ac,vo]=accelerate(U,X,m,rg,mu,M,I)
2 % input arguments :
3 % U: Dimensionless Velocity Vector in BFF
4 % X:
        Dimensionless Position Vector [x y z phi theta psi] in EFF
  % m:
         Dimensionless Mass
\mathbf{5}
6
  % rg: Dimensionless Center of mass expressed in BFF
  % mu: Dimensionless Added mass
        Dimensionless Mass matrix
  % M:
8
  % T:
        Dimensionless inertia tensor
9
10 v = U(1:3); % Dimensionless Translational velocity expressed in BFF
11 omega = U(4:6); % Dimensionless Angular velocity in BFF
12 alpha = X(4:6); % Euler Angles
13 [T,J,\neg,\neg] = transform(alpha);
14 % T transform a vector's expression from EFF to BFF
15 % J transform velocity vector in BFF to time derivative of positioin vector
```

```
16 %% Gravitational force and Buoyance
17 F = T*[0;0;(m-1)]; % Dimensionless Combination of Gravitional Force and Buoyance
                      % expressed in BFF
18
19 G = T*[0;0;m]; % Dimensionless Gravitational force expressed in BFF
20 ml = cross(rg,G); % Dimensionless Moment produced by Gravitational expressed in BFF
21 %Force Moment produced by Buoyance equals to zero
22 GF = [F;m1]; % Dimensionless Generalized Froce expressed in BFF
23 %% Non-dimensional dynamic force
24 D = dyna(mu,v,omega);
25 %% Hydrodynamic damping
26 %%%%%
27 응응응응응
28 %% Non-dimensional force of coupling velocity, angular velocity, and rg
29 C = [m*cross(omega,v)+m*cross(omega,cross(omega,rg))
        cross(omega,I*omega)+ m*cross(rg,cross(omega,v))];
30
31 %% Acceleration
32 ac = M\(D-C+GF); % Dimensionless Acceleration in BFF
33 vo = J*U; % Dimensionless Time derivative of position vector
34 end
35 % Transformation matrix
36 function [T,J,J1,J2]=transform(alpha)
37 % Transformation from EFF to BFF
38 % Effect of phi
39 Ta21 = cos(alpha(1));
40 Ta23 = sin(alpha(1));
41 Ta32 = -sin(alpha(1));
42 Ta33 = cos(alpha(1));
43 if alpha(1) == pi/2
       Ta21 = 0;
44
       Ta33 =0;
45
46 end
  if alpha(1) == pi
47
48
       Ta23 = 0;
       Ta32 = 0;
49
50 end
                 Ο,
                                0;
  Tphi = [1,
51
             0, Ta21,
                               Ta23;
52
             0, Ta32,
                               Ta33];
53
54 % Effect of theta
55 Tb11 = cos(alpha(2));
56 Tb13 = -\sin(alpha(2));
57 Tb31 = sin(alpha(2));
58
  Tb33 = cos(alpha(2));
59
  if alpha(2) == pi/2
       Tb11 = 0;
60
61
       Tb33 =0;
62 end
  if alpha(2) == pi
63
       Tb13 = 0;
64
       Tb31 = 0;
65
66 end
67 Ttheta = [Tb11, 0, Tb13;
             Ο,
                                 0;
68
                        1.
           Tb31, 0, Tb33];
69
70 % Effect of psi
71 Tgl1 = cos(alpha(3));
72 Tg12 = sin(alpha(3));
73 Tg21 = -sin(alpha(3));
74 Tg22 = cos(alpha(3));
```

```
if alpha(3) == pi/2
75
        Tq11 = 0;
76
        Tg22 =0;
77
78
   end
   if alpha(2) == pi
79
        Tq12 = 0;
80
        Tg21 = 0;
81
   end
82
   Tpsi = [Tg11,Tg12,0;
83
             Tg21,Tg22,0;
84
              0, 0,
                         11;
85
   % Transfor vector's expression from EFF to BFF
86
87 T = Tphi*Ttheta*Tpsi;
88 T1 = Tphi*Ttheta;
89 Tt = [Tphi(:,1),T1(:,2),T(:,3)];
90 J1 = inv(T);
   %J1 = [cos(alpha(2))*cos(alpha(3)) sin(alpha(1))*sin(alpha(2))*cos(alpha(3))...
91
           -cos(alpha(1))*sin(alpha(3)) sin(alpha(1))*sin(alpha(3))+cos(alpha(1))*...
92
   2
   °
           sin(alpha(2))*cos(alpha(3))
93
           cos(alpha(2))*sin(alpha(3)) cos(alpha(1))*cos(alpha(3))+sin(alpha(1))*...
   %
94
   %
           sin(alpha(2))*sin(alpha(3)) cos(alpha(1))*sin(alpha(2))*sin(alpha(3))-...
95
   2
           sin(alpha(1) * cos(alpha(3)))
96
   8
            -sin(alpha(2)) sin(alpha(1))*cos(alpha(2)) cos(alpha(1))*cos(alpha(2))];
97
98 \ J2 = inv(Tt);
  O = [0 \ 0 \ 0; \ 0 \ 0; \ 0 \ 0];
99
100 J = [J1, O; O, J2];
101
   %J2 = [1 sin(alpha(1))*tan(alpha(2)) cos(alpha(1))*tan(alpha(2))
102
   %
          0 cos(alpha(1)) -sin(alpha(1))
          0 sin(alpha(1))/cos(alpha(2)) cos(alpha(1))/cos(alpha(2))]
103
   8
104
   % J1 transform a vector's expression from BFF to EFF
   % J2 transfrom angular velocity to time derivative of Euler angles
105
106 end
107
   % Dynamic force
108 function D=dyna(mu,v,omega)
109 % Dynamic force
110 D1 = mu(2)*(v(2)*omega(3)-v(3)*omega(2));
111 D2 = mu(2)*v(3)*omega(1)-v(1)*omega(3)*mu(1);
112 D3 = v(1) * omega(2) * mu(1) - v(2) * omega(1) * mu(2);
113 D4 = 0;
114 D5 = mu(3) * omega(1) * omega(3) + v(1) * v(3) * (mu(2) - mu(1));
115 \text{ D6} = -\text{mu}(3) \times \text{omega}(1) \times \text{omega}(2) + v(1) \times v(2) \times (\text{mu}(1) - \text{mu}(2));
116 D = [D1; D2; D3; D4; D5; D6];
117 end
```

E.3 Post-processing

Plot histories of state variables

```
1 function plotfigure(T,all,model)
2 %% Dimensionless position and attitude in EFF
3 fg1 = figure(1);
4 set(fg1,'Position',[50 30 1270 630]);
5 subplot(2,3,1), plot(T(:,1),all(1,:));
6 xlabel('$\bar{t};'.'Interpreter','latex','FontSize',20);
```

```
7 ylabel('$\bar{x}$','Interpreter','latex','FontSize',20);
8
9 subplot(2,3,2), plot(T(:,1),all(2,:));
10 xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
11 ylabel('$\bar{y}$','Interpreter','latex','FontSize',20);
12
13 subplot(2,3,3), plot(T(:,1),all(3,:));
14 xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
15 ylabel('$\bar{z}$','Interpreter','latex','FontSize',20);
16
17
18 subplot(2,3,4), plot(T(:,1),all(4,:));
19 xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
20 ylabel('$\phi$','Interpreter','latex','FontSize',20,'FontWeight','bold')
21
22 subplot(2,3,5), plot(T(:,1),all(5,:));
23 xlabel('\ bar{t};','Interpreter','latex','FontSize',20);
24 ylabel('$\theta$','Interpreter','latex','FontSize',20,'FontWeight','bold')
25
26 subplot(2,3,6), plot(T(:,1),all(6,:));
27 xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
28 ylabel('$\psi$','Interpreter','latex','FontSize',20,'FontWeight','bold')
29 ti = suptitle('Dimensionless Position in EFF and Attitude');
30 set(ti,'FontSize',20);
31 saveas(fg1,[model,'Dimensionless_Position.fig'])
32 %% Dimensional position and attitude in EFF
33 fg2 = figure(2);
34 set(fg2,'Position',[50 30 1270 630]);
35 subplot(2,3,1), plot(T(:,2),all(7,:));
36 xlabel('${t}$','Interpreter','latex','FontSize',20);
37 ylabel('${x}$','Interpreter','latex','FontSize',20);
38
39 subplot(2,3,2), plot(T(:,2),all(8,:));
40 xlabel('${t}$','Interpreter','latex','FontSize',20);
41 ylabel('${y}$','Interpreter','latex','FontSize',20);
42
43 subplot(2,3,3), plot(T(:,2),all(9,:))
44 xlabel('${t}$','Interpreter','latex','FontSize',20);
45 ylabel('${z}$','Interpreter','latex','FontSize',20);
46
47 subplot(2,3,4), plot(T(:,2),all(10,:));
48 xlabel('${t}$','Interpreter','latex','FontSize',20);
49 ylabel('$\phi$','Interpreter','latex','FontSize',20,'FontWeight','bold')
50
51 subplot(2,3,5), plot(T(:,2),all(11,:));
52 xlabel('${t}$','Interpreter','latex','FontSize',20);
53 ylabel('$\theta$','Interpreter','latex','FontSize',20,'FontWeight','bold')
54
55 subplot(2,3,6), plot(T(:,2),all(12,:));
56 xlabel('${t}$','Interpreter','latex','FontSize',20);
57 ylabel('$\psi$','Interpreter','latex','FontSize',20,'FontWeight','bold')
58 ti = suptitle('Position and Attitude in EFF');
59 set(ti,'FontSize',20);
60 saveas(fg2,[model,'Dimensional_Position.fig'])
61 %% Dimensionless velocity and angular velocity in BFF
62 fg3 = figure(3);
63 set(fg3,'Position',[50 30 1270 630]);
64 subplot(2,3,1), plot(T(:,1),all(13,:));
65 xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
```

```
66 ylabel('$\bar{u}$','Interpreter','latex','FontSize',20);
67
   subplot(2,3,2), plot(T(:,1),all(14,:));
68
   xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
69
   ylabel('$\bar{v}$','Interpreter','latex','FontSize',20);
70
71
   subplot(2,3,3), plot(T(:,1),all(15,:));
72
   xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
73
   ylabel('$\bar{w}$','Interpreter','latex','FontSize',20);
74
75
76 subplot(2,3,4), plot(T(:,1),all(16,:));
77 xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
   ylabel('$\bar{p}$','Interpreter','latex','FontSize',20);
78
79
   subplot(2,3,5), plot(T(:,1),all(17,:));
80
81 xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
   ylabel('$\bar{q}$','Interpreter','latex','FontSize',20);
82
83
   subplot(2,3,6), plot(T(:,1),all(18,:));
84
   xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
85
86
   ylabel('$\bar{r}$','Interpreter','latex','FontSize',20);
  c=suptitle('Dimensionless Translational Velocity and Angular Velocity in BFF');
87
88 set(c,'FontSize',20);
89 saveas(fg3,[model,'Dimensionless_BFF_Velocity.fig'])
90 %% Dimensional velocity and angular velocity in BFF
91 fq4 = figure(4);
92 set(fg4, 'Position', [50 30 1270 630]);
93 subplot(2,3,1), plot(T(:,2),all(19,:));
94 xlabel('${t}$','Interpreter','latex','FontSize',20);
   ylabel('${u}$','Interpreter','latex','FontSize',20);
95
96
97 subplot(2,3,2), plot(T(:,2),all(20,:));
   xlabel('${t}$','Interpreter','latex','FontSize',20);
98
   ylabel('${v}$','Interpreter','latex','FontSize',20);
99
100
101 subplot(2,3,3), plot(T(:,2),all(21,:));
102 xlabel('${t}$','Interpreter','latex','FontSize',20);
   ylabel('${w}$','Interpreter','latex','FontSize',20);
103
104
105 subplot(2,3,4), plot(T(:,2),all(22,:));
106
   xlabel('${t}$','Interpreter','latex','FontSize',20);
107
   ylabel('${p}$','Interpreter','latex','FontSize',20);
108
   subplot(2,3,5), plot(T(:,2),all(23,:));
109
   xlabel('${t}$','Interpreter','latex','FontSize',20);
110
   ylabel('${q}$','Interpreter','latex','FontSize',20);
111
112
   subplot(2,3,6), plot(T(:,2),all(24,:));
113
   xlabel('${t}$','Interpreter','latex','FontSize',20);
114
115 ylabel('${r}$','Interpreter','latex','FontSize',20);
116 ti = suptitle('Translational Velocity in EFF and Angular Velocity in BFF');
117 set(ti,'FontSize',20);
118 saveas(fg4,[model,'Dimensional_BFF_Velocity.fig'])
119 %% Dimensionless velocity in EFF and angular velocity in BFF
120 \text{ fg5} = \text{figure}(5);
121 set(fg5,'Position',[50 30 1270 630]);
122 subplot(2,3,1), plot(T(:,1),all(25,:));
123 xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
124 ylabel('$\bar{u}_x$','Interpreter','latex','FontSize',20);
```

```
125
126
   subplot(2,3,2), plot(T(:,1),all(26,:));
   xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
127
   ylabel('$\bar{u}_y$','Interpreter','latex','FontSize',20);
128
129
   subplot(2,3,3), plot(T(:,1),all(27,:));
130
   xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
131
   ylabel('$\bar{u}_z$','Interpreter','latex','FontSize',20);
132
133
   subplot(2,3,4), plot(T(:,1),all(16,:));
134
   xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
135
   ylabel('$\bar{p}$','Interpreter','latex','FontSize',20);
136
137
138
   subplot(2,3,5), plot(T(:,1),all(17,:));
   xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
139
   ylabel('$\bar{q}$','Interpreter','latex','FontSize',20);
140
141
   subplot(2,3,6), plot(T(:,1),all(18,:));
142
   xlabel('$\bar{t}$','Interpreter','latex','FontSize',20);
143
   ylabel('$\bar{r}$','Interpreter','latex','FontSize',20);
144
145 ti = suptitle('Dimensionless Translational Velocity in EFF and Angular Velocity in BFF');
146 set(ti,'FontSize',20);
147 saveas(fq5,[model,'Dimensionless_EFF_Velocity.fig'])
148 %% Dimensional velocity in EFF and angular velocity in BFF
149 fg6 = figure(6);
150 set(fq6,'Position',[50 30 1270 630]);
151 subplot(2,3,1), plot(T(:,2),all(28,:));
152 xlabel('${t}$','Interpreter','latex','FontSize',20);
153
   ylabel('${u}_x$','Interpreter','latex','FontSize',20);
154
   subplot(2,3,2), plot(T(:,2),all(29,:));
155
   xlabel('${t}$','Interpreter','latex','FontSize',20);
156
157
   ylabel('${u}_y$','Interpreter','latex','FontSize',20);
158
159
   subplot(2,3,3), plot(T(:,2),all(30,:));
   xlabel('${t}$','Interpreter','latex','FontSize',20);
160
   ylabel('${u}_z$','Interpreter','latex','FontSize',20);
161
162
163
   subplot(2,3,4), plot(T(:,2),all(22,:));
164 xlabel('${t}$','Interpreter','latex','FontSize',20);
165
   ylabel('${p}$','Interpreter','latex','FontSize',20);
166
167
   subplot(2,3,5), plot(T(:,2),all(23,:));
   xlabel('${t}$','Interpreter','latex','FontSize',20);
168
   ylabel('${q}$','Interpreter','latex','FontSize',20);
169
170
   subplot(2,3,6), plot(T(:,2),all(24,:));
171
172 xlabel('${t}$','Interpreter','latex','FontSize',20);
173 ylabel('${r}$','Interpreter','latex','FontSize',20);
174 ti = suptitle('Translational Velocity in EFF and Angular Velocity in BFF');
175 set(ti,'FontSize',20);
176 saveas(fq6,[model,'Dimensional_EFF_Velocity.fig'])
177
   end
```

Animation

1 function plotmoving (T,all,a,b,tstep,model)

```
2 % input arguments
3 % T:
            dimentional time series n by 1
4 % all:
            dimentional position vector in EFF
5 % a:
            major axis
6 % b:
            minor axis
  % tstep: time step
7
8 % model: name of video created
9 ski = 300; % number of time steps skipped
10 %% make video
11 FV = VideoWriter(model);
12 FV.Quality = 100;
13 FV.FrameRate = 1/(tstep*ski)/20;
14 open(FV);
15 % initialization
16 parrow1 = [a+0.05;0;0];
17 parrow2 = [0;a;0];
18 parrow3 = [0;0;a];
19 fg7=figure(7);
20 set(fg7,'Position',[50 30 1270 630]);
21 %% subplot
               xlow = -0.3;
22 \text{ xup} = 0.3;
23 \text{ ylow} = -0.3; \text{ yup} = 0.3;
24 \text{ zup} = 0.5; \text{ zlow} = -0.2;
25 %%
26 q1 = subplot(1,2,2);
27 %set(q1,'position',[ 0.5703,0.1100,0.2638,0.8150]);
28 axis([xlow,xup,ylow,yup,zlow,zup])
29 view([0,-1,0])
30 set(q1,'ZDir','reverse'); % reverse z axis
31 set(q1,'yDir','reverse'); % reverse y axis
32 axis equal
33 axis([xlow,xup,ylow,yup,zlow,zup])
34 set(q1, 'FontSize', 12,'FontWeight','bold')
35 % xlabel zlabel
36 hx = annotation('textbox',[0.7 0.05 0.2 0.1], 'FontSize',16,'FontWeight','bold',...
              'EdgeColor','none');
37
38 set(hx,'str','x(m)');
39 hz = annotation('textbox',[0.5 0.5 0.2 0.1], 'FontSize',16,'FontWeight','bold',...
40
               'EdgeColor','none');
41 set(hz,'str','z(m)');
42 view([0, -1, 0])
43 axis tight
44 opengl('software')
45 %%
46 \quad q2 = subplot(1,2,1);
47 axes(q2)
48 %set(q2,'position',[0.1300,0.1100,0.3347,0.8150]);
49 set(q2,'ZDir','reverse'); % reverse z axis
50 set(q2,'yDir','reverse'); % reverse y axis
51 axis equal
52 axis([xlow,xup,ylow,yup,zlow,zup])
53 q^2 = qca;
54 set(q2, 'FontSize', 12,'FontWeight','bold')
55 % xlabel ylabel zlabel
56 hx = annotation('textbox',[0.37 0.05 0.2 0.1], 'FontSize',16,'FontWeight','bold',...
         'EdgeColor','none');
57
58 set(hx,'str','x(m)');
59 hy = annotation('textbox',[0.14 0.1 0.2 0.1], 'FontSize',16,'FontWeight','bold',...
         'EdgeColor', 'none');
60
```

```
61 set(hy,'str','y(m)');
62 hz = annotation('textbox',[0.065 0.50 0.2 0.1], 'FontSize',16,'FontWeight','bold',...
          'EdgeColor','none');
63
64 set(hz,'str','z(m)');
65 axis tight
66 opengl('software')
   % for loop to create
67
   for i=1:ski:length(T)*1.8/3 ;
68
       pg = all(1:6,i);
69
       t = T(i);
70
       k=floor(i/ski+1);
71
                                            % points in one dimension
       n = 30;
72
       [X,Y,Z]=ellipsoid(0,0,-0,a,b,b,n); % points on a ellipsoid
73
74
       Tt=transform(pg(4:6));
                                            % transformation matrix
75
       for ii=1:n+1;
       for j=1:n+1;
76
        mm=Tt\[X(ii,j);Y(ii,j);Z(ii,j)];
77
78
        X(ii,j) = mm(1) + pg(1);
        Y(ii, j) = mm(2) + pg(2);
79
         Z(ii,j) = mm(3) + pg(3);
80
81
        end
        end
82
83 parrowl1 = (Tt\parrow1)';
84 parrowl2 = (Tt\parrow2)';
85 parrowl3 = (Tt\parrow3)';
86 %
87 axes(q1)
88 %set(q1,'position',[ 0.5703,0.1100,0.2638,0.8150]);
89 view([0,-1,0])
90 ff = mesh(X,Y,Z,'EdgeColor',[0 0 0.7],'FaceColor',[0 0 0.7]);
91 set(ff, 'FaceAlpha', 0.2)
92 set(ff,'EdgeAlpha',0.2)
93 ax = arrow3d(pg(1:3)',pg(1:3)'+parrow11,20,cylinder,[0.15,0.1],[20,10],[1,0,0]);
94 ay = arrow3d(pg(1:3)',pg(1:3)'+parrow12,20,cylinder,[0.15,0.1],[20,10],[1,0,1]);
95 az = arrow3d(pg(1:3)',pg(1:3)'+parrow13,20,cylinder,[0.15,0.1],[20,10],[0,0,1]);
96 % "arrow3d" function from Matlab central
97 % http://www.mathworks.com/matlabcentral/fileexchange/8396-draw-3d-arrows
98 set(gca,'ZDir','reverse');
99 set(gca,'yDir','reverse');
100 axis equal
101 axis([xlow,xup,ylow,yup,zlow,zup])
102 view([0, -1, 0])
103 legend([ax(1),ay(1),az(1)],'x_h','y_h','z_h','best')
104 set(gca, 'FontSize', 12,'FontWeight','bold')
105 %%
106 \text{ axes}(q2)
107 %set(q2,'position',[0.1300,0.1100,0.3347,0.8150]);
108 ff = mesh(X,Y,Z,'EdgeColor',[0 0 0.7],'FaceColor',[0 0 0.7]);
109 set(ff,'FaceAlpha',0.2)
110 set(ff,'EdgeAlpha',0.2)
111 arrow3d(pg(1:3)',pg(1:3)'+parrowl1,20,cylinder,[0.15,0.1],[20,10],[1,0,0]);
112 arrow3d(pg(1:3)',pg(1:3)'+parrowl2,20,cylinder,[0.15,0.1],[20,10],[1,0,1]);
113 arrow3d(pg(1:3)',pg(1:3)'+parrow13,20,cylinder,[0.15,0.1],[20,10],[0,0,1]);
114 set(gca,'yDir','reverse');
115 set(gca,'ZDir','reverse');
116 axis equal
117 axis([xlow,xup,ylow,yup,zlow,zup])
118 set(gca, 'FontSize', 12,'FontWeight','bold')
119 % time
```

```
120 tm = annotation('textbox',[0.45 0.75 0.1 0.2], 'FontSize',16,'FontWeight','bold',...
        'EdgeColor','none');
121
122 set(tm,'str',['t=',num2str(t,3),'(s)']);
123 %%
124 gf = getframe(fg7,[70 30 1160 600]);
125 frame(:,k) = gf;
126 delete(tm);
127 end
128 % output video
129 writeVideo(FV,frame(1:end));
130 close(FV)
131 end
132 % Transformation matrix
133 function [T,Tt]=transform(alpha)
134 %% Transformation from EFF to BFF
135 % Effect of phi
   Tphi = [1,
                                  0;
136
                Ο,
137
              0, \cos(alpha(1)), \sin(alpha(1));
138
              0,-sin(alpha(1)),cos(alpha(1))];
   % Effect of theta
139
   Ttheta = [\cos(alpha(2)), 0, -\sin(alpha(2));
140
                       1,
              Ο,
                                 0;
141
            sin(alpha(2)), 0, cos(alpha(2))];
142
143 % Effect of psi
144 Tpsi = [cos(alpha(3)),sin(alpha(3)),0;
145
             -sin(alpha(3)),cos(alpha(3)),0;
146
             Ο,
                                Ο,
                                       1];
147 % Transfor mation
148 T = Tphi*Ttheta*Tpsi;
149 % Transformation from dalpha to omega
150 T1 = Tphi*Ttheta;
151 Tt = [Tphi(:,1),T1(:,2),T(:,3)];
152 end
```

DEPARTMENT OF MECHANICAL ENGINEERING

UNIVERSITY OF CALIFORNIA - BERKELEY

LIBRARY PERMISSION FORM

MASTER'S PLAN II

Last Name:	Yang	First N	lame:	Во	Middle N	lame:		
SID : 249	78939	Major Fie	ld Area : [Ocean Engin	eering	Degree (Goal: MS	
hone Number +1 (510) 734-76		Email :	Email : yangbo90@berke		keley.cdu Submis		sion Date: May 15, 201	

IMMEDIATE RELEASE

 \Box I authorize the Department of Mechanical Engineering to release my report to the UC Berkeley Library and have it made available to the public electronically through the library catalog as soon as is feasible after my report has been filed.

EMBARGO FOR 2 YEARS

I wish my report to be withheld for 2 years following the date of filing after which time it will be released to the UC Berkeley Library and made available to the public electronically through the library catalog.

EMBARGO FOR LESS/MORE THAN 2 YEARS

 \Box I wish my report to be withheld for year(s) following the date of filing after which time it will be release to the UC Berkeley Library and made available to the public electronically through the library catalog.

Explanation required if more than 2 years:

14/2015	Date: 5/1-				Yang	Bo	Student Signature:
114/2015	Date: 5/1	Profeso	Surta	med with	52	Signature:	MS Committee Chair
	<u>- 2 ato: 0 //</u>	J'refeto	T	met with		Jigilitai V.	